
INTRODUCTION

The hypothalamus is a component of the diencephalon located 
inferior to the thalamus and superior to the midbrain. It serves as 
the highest regulator of the autonomic nervous system and plays a 
crucial role in maintaining glucose homeostasis and regulating the 
secretion of insulin, glucagon and various hormones. Although 
Claudius Galen in the second century and Andreas Vesalius in the 
16th century described the brain region corresponding to the part 
of the hypothalamus, it was Wilhelm His who coined the term 
“hypothalamus” in 1893. The hypothalamus has several nuclei, 
which are aggregations of neurons: paraventricular nucleus (PVH), 
ventromedial nucleus (VMH), dorsomedial nucleus (DMH), pre-
optic nucleus, supraoptic nucleus, suprachiasmatic nucleus, lateral 
hypothalamic area (LHA) and arcuate nucleus. These hypotha-
lamic nuclei are connected to each other and various surrounding 

brain regions, regulating the secretion of various peptides and 
neurotransmitters. The arcuate nucleus is also referred to as the 
infundibular nucleus or the arcuate nucleus of the hypothalamus 
(ARH) to distinguish it from another arcuate nucleus in the me-
dulla oblongata (MO). The ARH was first described as nucleus in-
fundibularis in 1948 by Hugo Spatz and colleagues, and is located 
in the mediobasal hypothalamus, adjacent to the third ventricle 
and the median eminence (ME) [1-4].

The ARH consists of various neurons that have diverse physi-
ological roles ranging from cardiovascular regulation, feeding, en-
ergy expenditure, and fertility to metabolism. These neurons can 
be classified into two groups: neuroendocrine neurons and cen-
trally-projecting neurons, which are not mutually exclusive. The 
neuroendocrine neurons release various neurotransmitters and/
or neuropeptides, such as neuropeptide Y (NPY), agouti-related 
peptide (AgRP), cocaine- and amphetamine-regulated transcript 
(CART), dopamine, gonadotropin-releasing hormone (GnRH), 
growth hormone–releasing hormone (GHRH), kisspeptin (Kiss1), 
neurokinin B (NKB), dynorphin A, proopiomelanocortin (POMC) 
and substance P (SP). The centrally-projecting neurons transmit 
information to other hypothalamic nuclei or other brain regions 
outside the hypothalamus [2, 5-7]. 

This review describes the physiological and molecular functions 
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and genetic disorders of various neurons in the ARH.

NEUROENDOCRINE NEURONS

NPY-expressing neurons

NPY, a 36-amino-acid orexigenic neuropeptide [8], was first 
identified from extracts of porcine brains without the cerebel-
lum and pituitary gland by Tatemoto et al. [9]. In 1984, Clark and 
colleagues reported that intraventricular administration of NPY 
to ovariectomized rats pretreated with estradiol benzoate plus 
progesterone stimulated feeding behavior [10] (Table 1). Intraven-
tricular infusion of NPY suppresses pulsatile GH release in rats 
[11-13]. However, genetic ablation of NPY in mice does not alter 
food intake and body weight, suggesting a functional redundancy 
of NPY [14, 15].

AgRP-expressing neurons

In 1997, the Barsh group showed that AgRP is a selective antago-
nist of the melanocortin receptors MC3R and MC4R and that 
transgenic mice expressing human AgRP develop obesity [16]. 
AgRP is an orexigenic peptide consisting of 132 amino acids – its 
mature form has 112 amino acids [17]. The Schwartz group dem-
onstrated in 1998 that NPY and AgRP are co-expressed in fasting-
activated ARH neurons [18]. ARH neurons expressing NPY/

AgRP (ARHNPY/AgRP+) are GABAergic [19, 20]. They are activated 
by ghrelin [21, 22], and inactivated by leptin [19, 23], insulin, and 
glucose in the blood [24, 25], thus regulating energy balance and 
food intake [24-27]. Knockout of AgRP in mice show normal food 
intake and body weight, implying its functional redundancy [15], 
and have an extended life span with their point estimate of median 
survival exceeding that of their littermates by 9.8% [28].

Optogenetic activation of AgRP neurons in mice triggers vora-
cious feeding within minutes [29]. In addition, chemical activation 
of these neurons in mice evoked food consumption, decreased 
energy expenditure, and enhanced fat stores [30]. Either ablation 
or suppression of ARHAgRP+ neurons causes aphagia [17, 30-32]. In 
vivo Ca2+ imaging using GCaMP6s has shown that sensory detec-
tion of food inhibits mice AgRP neurons very rapidly [33]. The 
Knight group showed that food intake stimulates mechanorecep-
tors in the intestinal vagal sensory neurons, which in turn inhibits 
ARHAgRP+ neurons [34]. The Horvath, Nitsch, and Vogt groups 
proposed that fasting evoked activation of ARHAgRP+ neurons 
elevates lysophosphatidic acid (LPA) species in the blood and ce-
rebrospinal fluid, which subsequently elevates cortical excitability 
leading to hyperphagia [35]. The Anderman group showed that 
preemptive photostimulation of AgRP neurons in a home cage, 
but not in a threat-containing task arena, induces conditioned 
food seeking under threat [36]. 

Table 1. Types of neurons in the ARH

Types of neurons References numbers

Neuroendocrine neurons in ARH NPY-expressing neurons [8-10]
AgRP-expressing neurons [16-18]
CART-expressing neurons [37-39]
Dopamine-expressing neurons [47-50]
GnRH-expressing neurons [55-59]
GHRH-expressing neurons [68-75]
Kiss1-expressing neurons [79, 80, 82-86]
NKB-expressing neurons [93-98]
Dynorphin A-expressing neurons [99-102]
POMC-expressing neurons [105-109]
SP-expressing neurons [117-125]

Centrally-projecting neurons in ARH ARH neurons projecting to the PVH [16, 51, 126-129]
ARH neurons projecting to the LHA [132, 133]
ARH neurons projecting to the DMH [127, 134]
ARH neurons projecting to the aBNST [133, 135]
ARH neurons projecting to the PVT [136]
ARH neurons projecting to the CEA [24, 137-139]
ARH neurons projecting to the PAG [142]
ARH neurons projecting to the PBN [145, 146]
ARH neurons projecting to the VTA [147]
ARH neurons projecting to the nucleus raphe obscurus [148]
ARH neurons projecting to the NTS [148]
ARH neurons projecting to the NAc [149-151]
Projections from the PVHTRH/PACAP+ to the ARHAgRP+ neurons [152]
Projections from the vDMH to the ARHAgRP+ neurons [153]
Projections from the NTS to the ARHPOMC+ neurons [154]
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CART-expressing neurons

The Douglass group identified in the rat brain an mRNA that 
was induced four- to fivefold by the administration of cocaine or 
amphetamine and named it CART in 1995. Human proCART 
has 89 amino acids. ARH neurons express CART [37], which 
functions as an anorexigenic peptide [38, 39]. Mice lacking CART 
exhibit an obesity phenotype [40, 41]. CART is also implicated 
in immunity, fluid balance, reproduction, learning and memory, 
sleep, stress, addiction and depression [42, 43]. G-protein coupled 
receptor (GPR) 160 was reported as a CART receptor [44, 45]. 
Single-cell RNA sequencing revealed that of three POMC clusters, 
ARHCART+ neurons overlap most abundantly with POMC/Anxa2 
cluster neurons, yet showed little to no overlap with POMC/Ttr 
cluster and POMC/Glipr1 cluster neurons [46].

Dopamine-expressing neurons

In the 1960s and 1970s, dopamine released from tuberoinfun-
dibular dopaminergic (TIDA) neurons in the ARH was reported 
to regulate prolactin secretion [47-50]. The Murakami group 
found that Neuromedin U inhibits prolactin secretion via activa-
tion of TIDA neurons [51]. Zufall, Leinders-Zufall and colleagues 
demonstrated that deletion of transient receptor potential (TRP) 
channel Trpc5 enhances dopamine release from TIDA neurons, 
which in turn causes hypoprolactinemia [52]. Approximately half 
of TIDA neurons are GABAergic and do not participate in the 
regulation of prolactin secretion [53].

Optogenetic activation of mouse ARH neurons expressing ty-
rosine hydroxylase (TH) suppresses POMC neurons and induces 
hyperphagia. TH is an enzyme that converts L-tyrosine to L-
DOPA, a precursor of dopamine. Conversely, ablation of ARHTH+ 
neurons decreases body weight [54].

GnRH-expressing neurons

GnRH, a decaneuropeptide, stimulates the biosynthesis and 
release of follicle-stimulating hormone (FSH) and luteinizing hor-
mone (LH) from the anterior pituitary gland. The primary struc-
ture of mammalian GnRH was characterized in the early 1970s 
[55, 56]. In mammals, GnRH-expressing neurons originate in the 
developing olfactory pit, and migrate towards the hypothalamus, 
encompassing the primarily preoptic area and ARH, during early 
embryogenesis [57-59]. Estradiol feedback and Kiss1 modulate 
the excitability of ARHGnRH+ neurons [60]. ARH neurons that co-
express Kiss1, NKB and dynorphin A (dubbed KNDy neurons) 
act in coordination to facilitate pulsatile secretion of GnRH, which 
is critical to reproductive endocrine function [61-64]. Mice carry-
ing homozygous null GnRH mutation show hypogonadotropic 
hypogonadism [65-67].

GHRH-expressing neurons

GHRH, a 44-amino acid peptide hormone, binds to the its cog-
nate receptor in the anterior pituitary gland, thereby stimulating 
the secretion of growth hormone (GH) [68-70]. The primary 
structure of human GHRH was elucidated in 1982 [71, 72]. In 
mammals, GHRH is synthesized in ARH neurons [73-75]. The 
knockout of GHRH in mice results in reduced body weight, in-
creased insulin sensitivity and a prolonged lifespan compared to 
their littermates [76-78].

Kiss1-expressing neurons

Initially identified as a protein that suppresses the metastasis 
of human malignant melanoma [79], Kiss1 is synthesized in 
hypothalamic nuclei including the ARH [80]. Kiss1+ neurons ex-
hibit electrophysiological properties characteristic of pacemaker 
neurons [81], and synthesize NKB and dynorphin as well [82]. 
Upon binding to its cognate receptor, GPR54 (also known as Kiss1 
receptor [Kiss1R]), Kiss1 stimulates GnRH neurons triggering 
pulsatile GnRH release into the portal circulation. This induces 
the secretion of LH and FSH from the anterior pituitary gland [83-
86]. Prolactin binds to prolactin receptors in ARHKiss+ neurons and 
thus decreases Kiss1 expression in female rats, leading to suppres-
sion of LH secretion and subsequent infertility [87].

Mice with a Kiss1 hypomorph mutation exhibit sexually dimor-
phic reproductive phenotypes: male mutants are fertile, whereas 
female mutants show impaired fertility and ovulation [88, 89]. 
The genetic ablation of Kiss1+ neurons results in fertile mice with 
smaller ovaries compared to their littermates, with no impact on 
the timing of female puberty onset [90]. ARH-specific deletion of 
Kiss1 leads to arrested folliculogenesis, hypogonadism and infer-
tility in female mice, and hypogonadism, and variable, defective 
spermatogenesis, and subfertility in male mice [91]. Furthermore, 
ARHKiss1+ neurons are a necessary component of the hypothalamic 
circadian oscillator circuit [92]. 

NKB-expressing neurons

NKB, identified as a decaneuropeptide in 1983 [93-95], is gener-
ated through the proteolytic cleavage of a preproprotein encoded 
by TAC3. Its primary receptor is neurokinin 3 receptor (NK3R), 
also known as tachykinin receptor 3 (TACR3), which is a GPCR. 
TACR3 is not only found in the central nervous system (CNS), but 
also in the uterus, mesenteric vein, gut neurons, and placenta [96, 
97]. Upon binding to NK3R, NKB stimulates GnRH neurons to 
release GnRH into the portal circulation [98].

Dynorphin A-expressing neurons

Dynorphin A is a potent opioid peptide consisting of 13 amino 
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acids and its amino acid sequence was determined by the Avram 
Goldstein laboratory in 1981 [99, 100]. It activates the κ-opioid 
receptor (KOR), which is expressed throughout the brain and spi-
nal cord [101], resulting in the modulation of pain, addiction and 
mood [102]. In mice lacking dynorphin, corticotropin releasing 
factor is unable to activate KOR in the basolateral amygdala, dorsal 
hippocampus and bed nucleus of the stria terminalis (BNST), all 
of which are brain regions associated with fear and anxiety [103, 
104].

POMC-expressing neurons

Proteolytic cleavage of POMC results in the formation of various 
biologically active peptides including adrenocorticotropic hor-
mone (ACTH), N-POMC, β–endorphin, α-, β– and γ-melanocyte-
stimulating hormones (MSH). While POMC is primarily synthe-
sized in the anterior pituitary, some ARH neurons also express 
POMC. Once secreted, POMC undergoes cleavage into α-MSH 
that binds to MC3/4R in the PVH neurons, thereby activating sati-
ety signals [105-107]. POMC neurons regulate food intake and en-
ergy expenditure by responding to circulating blood glucose levels 
[108, 109]. Optogenetic activation of POMC neurons in mice has 
reduces food intake and body weight [29]. In vivo Ca2+ imaging 
using GCaMP6s revealed that food presentation to fasted mice ac-
tivates POMC neurons very rapidly [33]. Glucagon-like peptide-1 
(GLP-1) binds to the GLP-1 receptor in ARHPOMC+ neurons, thus 
suppressing food intake [110-112]. The Horvath group reported 
that activation of cannabinoid receptor 1 (CB1R) in the presynap-
tic terminals of POMC neurons triggers β–endorphin release and 
drives feeding [113]. The Yu group discovered that β–endorphin 
in the ARH contributes to antinociception in rats with inflamma-
tion [114]. The Low group observed that conditional knockout of 
POMC in the mouse ARH elicited hyperphagia, insulin resistance, 
obesity and improved glucose tolerance [115, 116].

SP-expressing neurons

SP was named by Gaddum and Schild [117] in 1934 and its 
11-amino acid long sequence was determined in 1971 [118]. This 
neurokinin peptide is encoded by preprotachykinin A (PPTA or 
Tac1). PPTA also generates neurokinin A through alternate slic-
ing [119]. SP is widely expressed in the brain including the ARH 
[120] and is implicated in nociception, respiration, inflammation, 
thermoregulation, the cardiovascular function and emotional 
and anxiety-related behaviors [121-123]. Glutamate induces SP 
release from the ARH and ME, thereby stimulating the secretion 
of gonadotropins [124]. The expression of SP and its receptor in 
the ARH peaks before mice puberty, and SP-/- mice exhibit delayed 
puberty and female subfertility [125].

CENTRALLY-PROJECTING NEURONS

The ARH receives signals from various sources, including hor-
monal and nutrient signals through the ME, afferent inputs from 
the vagus nerve and other brain nuclei, coordinates them and 
sends feedback responses via centrally-projecting neurons.

ARH neurons projecting to the PVH

ARH neurons expressing orexigenic (appetite-stimulating) 
peptides AgRP and NPY project to the PVH, where they bind to 
MC3/4R and NPY Y1 receptor (NPY1R), respectively. The bind-
ing of AgRP to MC3/4R, a receptor for α-MSH, suppresses the 
anorexigenic effect of α-MSH in the PVH [16]. In addition, the 
binding of NPY to NPY1R activates GABAergic neurons in the 
intermediate and parvicellular reticular nuclei of the MO possibly 
via the nucleus tractus solitarius (NTS) in the MO. This results in 
the stimulation of feeding behavior through the activation of the 
masticatory motor region and a decrease in energy expenditure 
via reduced sympathetic output to the brown adipose tissue (BAT) 
thermogenesis [51, 126-128].

Upon nutrient ingestion, ARH neurons expressing POMC (AR-
HPOMC+) that project to the PVH release α-MSH, activating MC4R 
on PVH neurons (Fig. 1). As a result, food intake is suppressed [129, 
130]. ARH neurons expressing TH project to the PVH and the 
optogenetic activation of ARHTH+ axons releases both dopamine 
and GABA, thus inhibiting PVH neurons [54]. Projections from 
ARHAgRP/NPY+ to PVH can be remodeled both morphologically and 
functionally by fasting in mice [131].

ARH neurons projecting to the LHA

ARH neurons expressing both AgRP and NPY project to the 
LHA [132], and optogenetic stimulation of this projection can 
evoke feeding behavior in mice [133]. 

ARH neurons projecting to the DMH

ARHKiss1+ neurons project to DMH neurons. When activated op-
togenetically, they release glutamate, thus regulating energy expen-
diture in female mice [134]. Moreover, ARHNPY+ neurons project 
to DMH neurons expressing NPY1R. These in turn project to the 
nucleus raphe pallidus, resulting in the inhibition of sympathetic 
outputs for BAT thermogenesis, mean arterial pressure, and heart 
rate [127].

ARH neurons projecting to the anterior BNST (aBNST)

ARHAgRP+ neurons project to two distinct parts of the aBNST: the 
dorsomedial part (aBNSTdm) and the ventrolateral part (aBNSTvl). 
ARHAgRP+ projections to the aBNSTdm and aBNSTvl induce feeding 
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and peripheral insulin resistance, respectively [133, 135].

ARH neurons projecting to the paraventricular thalamic 

nucleus (PVT)

ARHNPY+ and ARHCART+ neurons project to the PVT. As NPY 
and CART are orexigenic and anorexigenic, respectively, these two 
antagonistic circuits suggest that the PVT may integrate orexigenic 
and anorexigenic inputs [136].

ARH neurons projecting to the central nucleus of the  

amygdala (CEA)

The amygdala is involved in emotional responses including fear, 
anxiety, and aggression as well as the regulation of energy balance 
[137, 138]. Reciprocal projections exist between ARHNPY+/CART+ 
neurons and CEA neurons [24, 139]. Infusion of insulin into the 
CEA increases the immunoreactivity of c-Fos, a neuronal activ-
ity marker, in the ARH, suggesting that insulin mediates anorexia 
via this circuit [137, 140]. Alcohol activates ARHPOMC+ neurons 
projecting primarily to the amygdala, which may be implicated in 
rewarding effect responsible for alcohol use disorders [141].

ARH neurons projecting to the periaqueductal gray (PAG) 

in the midbrain

Retrograde labeling has revealed the projection of POMC neu-
rons in the ARH to the PAG [142]. During electroacupuncture, 
glutamatergic reciprocal projections between ARH neurons and 
ventrolateral PAG neurons become activated [143]. Galanin ac-
tivates projections from ARHβ–endorphin+ neurons to PAG neurons, 
thereby triggering anti-nociceptive effects [144]. 

ARH neurons projecting to the parabrachial nucleus (PBN)

ARH neurons co-expressing AgRP, NPY and GABA project 
to the PBN in the pons, thus inhibiting the GABAA receptor in 
neurons expressing calcitonin gene-related peptide (CGRP). This 
inhibition delays meal termination [145, 146].

ARH neurons projecting to the ventral tegmental area 

(VTA)

ARHPOMC+ neurons project to the VTA, inhibiting dopamine 
neurons in this region. In mice under chronic restraint stress, op-
togenetic inhibition of this circuit increases body weight and food 
intake, and suppresses depression-like behaviors and anhedonia 
[147]. 

ARH neurons projecting to the nucleus raphe obscurus

Optogenetic stimulation of aBNST neurons expressing gluta-
mate decarboxylase 2 (aBNSTGad2+) in mice activates the nucleus 
raphe obscurus in the MO via projections from ARHGad2+ neurons, 
thereby mobilizing glucose rapidly [148].

ARH neurons projecting to the NTS

Activation of ARHGad2+ neurons through projections from aBN-
STGad2+ neurons in mice stimulates projections to the NTS, eliciting 
anxiety-like behavior [148].

ARH neurons projecting to the nucleus accumbens (NAc)

ARHβ-endorphin+ neurons project to the GABAergic neurons in the 
NAc, which are associated with ethanol reinforcement [149, 150]. 
Chang et al. [151] demonstrated that acupuncture stimulates this 

PAG

PBN

ARH
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PVT

PVH

aBNST
DMH

NTS

VTA

POMC
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+_ _ +
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Figure 1

Fig. 1. Schematic illustration of projections to and from ARH neurons. aBNST, anterior bed nucleus of the stria terminalis; ARH, arcuate nucleus of 
hypothalamus; CEA, central nucleus of the amygdala; DMH, dorsomedial nucleus; LHA, lateral hypothalamic area; NAc, nucleus accumbens; NTS, 
nucleus tractus solitarius; PAG, periaqueductal gray; PBN, parabrachial nucleus; POMC, proopiomelanocortin; PVH, paraventricular nucleus; PVT, 
paraventricular thalamic nucleus; TRH, thyrotropin-releasing hormone; VTA, ventral tegmental area.
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projection and thus attenuates alcohol dependence in rats.

Projections from the PVHTRH/PACAP+ to the ARHAgRP+ neurons

PVH afferent neurons expressing thyrotropin-releasing hor-
mone (TRH) and pituitary adenylate cyclase-activating poly-
peptide (PACAP), provide excitatory input to ARHAgRP+ neurons, 
thereby inducing intense feeding [152].

Projections from the ventral compartment of the DMH 

(vDMH) to the ARHAgRP+ neurons 

In the fasted state, food detection rapidly activates GABAergic 
vDMHLepR/pDYN+ → ARHAgRP+ neurons, which in turn inhibit AR-
HAgRP+ neurons [153].

Projections from the NTS to the ARHPOMC+ neurons

GLP-1 neurons in the NTS project to ARHPOMC+ neurons ex-
pressing GLP-1R. This circuit is involved in the suppression of 
food intake [154].

ARH ASSOCIATED GENETIC DISEASES

Hypothalamic obesity syndrome (HOS)

Obesity, a chronic inflammation disorder, is associated with 
diverse diseases such as cardiovascular diseases, type 2 diabetes 
mellitus, certain types of cancer, and CNS diseases [155]. Charac-
terized by overweight and disrupted energy homeostasis, obesity 
results from an imbalance between energy storage and expen-
diture, and excessive food intake [156]. The hypothalamus is the 
main brain region controlling energy homeostasis [157]. Specifi-
cally, neurons in the ARH including ARHAgRP/NPY+, ARHPOMC+ 
and ARHCART+ play a critical role in energy homeostasis [158]. In 
obese condition, hyperglycemia and insulin resistance can lead to 
hypothalamic inflammation, POMC neuronal loss and microglia 
activation in the ARH [159, 160]. While various factors including 
anatomic lesions, can caused HOS [161, 162], here we focus solely 
on genetic causes in the ARH.

Leptin, an anorexigenic hormone, is primarily produced in 
adipose cells and binds to its cognate receptor, the leptin recep-
tor. This binding in AgRP/NPY neurons reduces expression and 
release of AgRP and NPY. However, this binding in CART/POMC 
neurons increases expression and release of CART and POMC. 
As a result, appetite reduction is suppressed, and locomotion, ther-
mogenesis, and lipolysis are enhanced [163, 164]. Mutations in the 
leptin receptor are known to cause HOS [165, 166].

MC4R mutations negate the satiating effect of α-MSH in the 
ARH, and thus elicit hyperphagia and a higher satiety threshold. 
Once stimulated by leptin, ARHPOMC+ neurons produce α-MSH, 

which in turn binds to MC4R in PVH neurons. These mutations 
are the most common cause of monogenic obesity [167-170].

A heterozygous missense mutation in the CART gene (Leu-
34Phe) in ARHCART+ neurons is responsible for obesity with a re-
duced metabolic rate [171, 172].

Homozygous or compound heterozygous mutations in the 
POMC gene in ARHPOMC+ neurons cause early-onset obesity, hy-
perphagia, blunted satiety, secondary adrenal insufficiency, and 
pigmentary changes [173, 174].

Prohormone convertase 1 (PC1, also referred to as proprotein 
convertase subtilisin/kexin type 1 [PCSK1]) splices POMC in AR-
HPOMC+ neurons to liberate various biologically active peptides in-
cluding ACTH and α-MSH. Compound heterozygous mutations 
in PC1 lead to early-onset obesity, hypoadrenalism, and reactive 
hypoglycemia [175, 176].

Age-related progressive weight gain typically develops in middle 
age, which is followed by anorexia (sarcopenia and/or cachexia) 
in old age. This phenomenon is primarily linked to a decrease and 
increase in ARHPOMC+ neuronal tone in middle age and old age, 
respectively [177-179].

Neurogenin 3 (Ngn3 or Neurog3) is a basic helix-loop-helix 
transcription factor implicated in the development of pancreatic 
β-cells and the hypothalamus. The conditional knockout of hypo-
thalamic Ngn3 in mice elicits hyperphagia and reduced energy ex-
penditure leading to obesity. This is primarily due to a decrease in 
the number of ARHPOMC+ neurons and an increase in the number 
of ARHNPY+ neurons [180, 181].

Nescient helix-loop-helix 2 (NHLH2) is a transcription factor 
that promotes the transcription of PC1/3 [182], and is a down-
stream target gene of leptin signaling [183]. Mutations in NHLH2 
are associated with obesity [184-186]. 

Islet 1 (ISL1), a LIM-homeodomain transcription factor, aug-
ments expression of POMC, thereby promoting the terminal 
differentiation of ARHPOMC+ neurons in the developing hypo-
thalamus. Conditional ISL1 knockout in mice ARHPOMC+ neurons 
induces hyperphagia and obesity [187, 188]. 

Tubby (Tub) is expressed in the human hypothalamus including 
the ARH and adipose tissue. Homozygous mutations in human 
Tub are associated with retinal dystrophy and early-onset obesity. 
However, the molecular function of Tub is still under debate [189, 
190]. 

Orthopedia homeobox (Otp), a homeodomain transcription fac-
tor, is expressed in several hypothalamic nuclei including the ARH, 
and plays an important role in the development of hypothalamic 
neuroendocrine cell lineages in mice. Heterozygous missense mu-
tations in Otp results in obesity, glucose intolerance and anxious 
behavior in mice [31, 191].
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Given that obesity can ensue from various genetic mutations 
in the ARH neurons, investigation of genes associated with HOS 
followed by editing of a causative mutation(s) may offer a way to 
alleviate obesity.

Puberty and sexual maturation disorders

Homozygous or compound heterozygous mutations in Kiss1 
or Kiss1R (also called GPR54) lead to hypogonadotropic hypo-
gonadism, resulting in pubertal failure [85, 192-195]. Activating 
mutations in Kiss1 or Kiss1R cause central precocious puberty 
(CPP) [194, 196]. Mutations in NHLH2 also lead to hypogonado-
tropic hypogonadism [185, 186]. Furthermore, homozygous muta-
tions in TAC3 or TACR3 elicit hypogonadotropic hypogonadism 
[197-200]. Loss-of-function mutations in the makorin ring finger 
protein 3 (MKRN3) and deletion mutations in the delta-like 1 ho-
molog (DLK1) result in CPP [201, 202]. 

CONCLUSION

Various types of ARH neurons, their neuropeptides, and their 
projections play an important role in the regulation of nutrition/
metabolism and reproduction. However, their precise roles remain 
unclear. Advanced manipulation of these neuropeptides and their 
cognate receptors in the ARH through genetics, optogenetics and 
chemogenetics could shed more light on the molecular mecha-
nism by which the ARH regulates nutrition/metabolism and re-
production.
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