
INTRODUCTION

The Cre-loxP recombination system has been widely used for 
studying gene functions in animals by allowing region-specific 
knockout of target genes through site-specific expression of Cre. 
Inducible Cre such as CreER provides more specific control of 
spatiotemporal deletion or lineage labeling through timed ad-
ministration of synthetic estrogen receptor (ER) ligands such as 

tamoxifen (TAM) or 4-hydroxytamoxifen (4-OHT) [1, 2]. Em-
bryonic administration of tamoxifen rapidly induces abortion 
in pregnant mouse mothers and severely perturbs embryonic 
development, rendering the inducible Cre system inapplicable to 
the study of developmentally regulated genes in embryos [3]. In 
contrast, tamoxifen injection after birth is less harmful and rela-
tively tolerable in neonates, suggesting that inducible Cre-loxP 
may provide genetic tools for the study of postnatal development 
[4]. While most major structures in the central nervous system de-
velop before birth, cerebellar architecture develops actively during 
the first three weeks after birth [5]. During this period, neuronal 
progenitor cells proliferate, migrate, and terminally differentiate 
into the cerebellar cortex. Postnatal injection of tamoxifen to neo-
nates may enable studies on developmentally regulated gene func-
tions in mitotic and/or postmitotic cells in the cerebellum.

The cerebellar cortex consists of three distinct layers: the mo-
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lecular layer (ML), Purkinje cell layer (PCL), and granule cell layer 
(GCL). The somata of Purkinje cells (PCs) and Bergmann glia 
(BGs) are arranged in a single PCL layer. PCs are the only output 
neurons of the cerebellar cortex, and each sends a single, long axon 
to the deep cerebellar nuclei (DCN). ML contains inhibitory inter-
neurons, parallel fibers of GCNs, PC dendrites, and BG radial fi-
bers. The complex dendrites of PCs in the ML receive presynaptic 
inputs from parallel fibers (PFs) originating in GCNs in the GCL 
and climbing fibers (CFs) projecting from the inferior olivary 
nucleus [6]. This trilaminar architecture of the cerebellar cortex 
developed perinatally. During the late embryonic period (E17.5) 
and postnatal development, cerebellar granule cell progenitors 
(GCPs) rapidly proliferate in the external granule layer (EGL), 
radially migrate to the internal GCL, and eventually differentiate 
into GCNs. Sonic hedgehog (Shh) plays a key role in the prolifera-
tion of GCPs during cerebellar morphogenesis and histogenesis, 
and deletion of Shh induces hypoplasia of the cerebellar cortex [7-
9]. Shh secreted by PC [9, 10] activates the Gli1 promoter in GCPs 
and BGs [7, 11-13]. Thus, Gli1CreERT2 mice with CreERT2 knocked 
into the Gli1 locus are widely used as a readout of Shh-positive 
signaling to study the contribution of Shh transcriptional activator 
function during postnatal development [14-16]. Recently, several 
proteins from the synaptic compartment have been shown to have 
a longer half-life than those from the cytoplasmic compartment 
[17]. The long half-life of proteins makes it difficult to sufficiently 
clear these gene products from post-mitotic neurons even after 
the mRNA and protein are no longer synthesized after genetic 
recombination. Gli1CreERT2 mice may provide a useful system for 
knocking out these genes in post-mitotic neurons by allowing the 
dilution of proteins in dividing progenitor cells.

In this study, we investigated whether Gli1CreERT2 could provide an 
appropriate system to selectively knockout genes in proliferating 
GCPs and whether the knockout effect was maintained in post-
mitotic GCNs. Using Gli1CreERT2::R26RYFP/+ mice, we showed that 
tamoxifen administration in the early and late postnatal period 

leads to cell-type specific knockout of the target genes in GCNs 
and/or BGs. Tamoxifen administration at P4~7 induces recombi-
nation in BGs and proliferating GCPs, leading to GCN knockout. 
Thus, tamoxifen administration at P19-22 induces knockout 
only in BGs. These results suggest that the Gli1 promoter leads to 
spatial deletion in GCPs and BGs, and timed administration of 
tamoxifen further specifies temporal deletion in GCNs and BGs. 
We also propose that Gli1CreERT2 mediated recombination in pro-
liferating GCPs may aid in the study of synaptic proteins with an 
extremely long half-life. 

MATERIALS AND METHODS

Mouse genetics

Gli1 tm3(cre/ERT2)Alj /J (referred to as Gli1 CreERT2 , #007913) and 
B6.129X1-Gt(ROSA)26Sortm1(EYFP)Cos (referred to as R26R-YFP , 
#006148) have been previously described [14, 18]. Gli1CreERT2 mice 
were crossed with R26R-YFP mice to generate heterozygotes for 
each allele and used to determine Cre-mediated recombination. 
Gli1+/+:: R26RYFP/+ was used as a negative control to demonstrate 
the specificity of tamoxifen (TAM) administration. Offspring were 
genotyped by polymerase chain reaction (PCR) with genomic 
DNA (gDNA) as previously described [19] using the primers 
shown in Table 1. 

TAM (Sigma-Aldrich) was dissolved in corn oil to a final con-
centration of 10 mg/ml. To activate Cre recombinase, mice were 
force-fed TAM (50 μg/g weight/ day) by oral pipet-feeding at the 
indicated time points and housed until euthanized. 

All experimental procedures were approved by Ajou University 
Medical Center-Institutional Animal Care and Use Committee 
(AUMC-IACUC, Suwon, South Korea).

Immunofluorescence analysis

Immunohistochemical analyses were performed as described 
previously [20]. Briefly, mice were deeply anesthetized with 2,2,2 

Table 1. The primer sequences for PCR reaction

Target Primer sequence PCR product

R26R
    Forward
    Reverse 1
    Reverse 2

5’-AAA GTC GCT CTG AGT TGT TAT-3’ 
5’-GGA GCG GGA GAA ATG GAT ATG-3’ 
5’-GCG AAG AGT TTG TCC TCA ACC-3’

WT: 600 bp (F+R1)
Knock-in: 325 bp (F+R2)

ΔR26R-YFP (recombined)
    Forward 
    Reverse

5’-GCG AAG AGT TTG TCC TCA ACC-3’
5’-ATG GCG GAC TTG AAG AAG TCG TG-3’

750 bp

Gli1-CreERT2
    Forward
    Reverse

5’-GCA TTA CCG GTC GAT GCA ACG AGT GAT GAG-3’
5’-GAG TAG ACG AAC CTG GTC GAA ATC AGT GCG-3’

404 bp
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tribromoethanol (200 mg/kg, i.p., Sigma-Aldrich), and then per-
fused transcardially with 10% neutral buffered formalin (BBC 
Biochemical). The brain was extracted, post-fixed in 10% neutral 
buffered formalin overnight at 4℃, and cryoprotected in 30% su-
crose. The brain was sagitally divided into two halves, embedded 
in OCT compound (Tissue-Tek, Sakura Finetek), and sectioned 
into 30 μm-thick frozen sections using a Leica cryostat (Leica). 
The cryosections were air-dried, and the residual OCT compound 
was washed in PBS with 0.1% (v/v) Triton X-100 (Sigma-Aldrich) 
(PBS-T). After incubation in blocking solution [10% (vol/vol) nor-
mal goat serum (Gibco), 1% bovine serum albumin (BSA; Sigma-
Aldrich) in PBS-T] for 1 h at room temperature, the sections were 
incubated with primary antibodies overnight at 4℃. The antibod-
ies used in this study were as follows: anti-GFP (1:500, Abcam, 
#ab13970), anti-Pcp2 (1:500, Santa Cruz, #sc-137064), anti-GFAP 
(1:200, Dako, #Z0334), anti-S100β (1:500, Abcam, #ab41548), anti-
NeuN (1:500, EMD Millipore, #MAB377), and anti-parvalbumin 
(PV; 1:500; Swant, #PV25). After unbound antibodies were 
washed with PBS-T, the sections were incubated with secondary 
antibodies conjugated with Alexa Fluor 405, 488, or 568 (1:500, 
Invitrogen). If necessary, nuclear counterstaining was performed 
using bisbenzamide (1:50,000, Hoechst 33258; Invitrogen). All 
fluorescence images were acquired using a Zeiss LSM710 confocal 
laser scanning microscope (Carl Zeiss) or Zeiss Axio Scan Z1 slide 
scanner (Carl Zeiss) at the Three-Dimensional Immune System 
Imaging Core Facility of Ajou University. 

Quantitative analysis

Confocal images of cerebellar sagittal sections were analyzed 
using ZEN software (Blue Edition, Zeiss). The specificity of Gli1-
CreER2 were expressed as the ratio of NeuN+ GCNs among YFP+ 
cells in GCL or the ratio of S100β+ BGs in PCL/ML. The coverage 
was shown as the ratio of YFP+ cells in NeuN+ GCNs or in S100β+ 
cells as previously defined [21].

RESULTS

Cerebellum specific Cre-mediated recombination driven by 

Gli1 promoter

To assess the Gli1 promoter-mediated expression of the Cre 
enzyme, Gli1 CreER2/+::  R26RYFP/+ mice were obtained by breed-
ing Gli1 CreER2/+ mice carrying the CreERT2 gene under the Gli1 
promoter with R26R-YFP  reporter mice that harbored a floxed 
stop cassette upstream of the enhanced yellow fluorescent 
protein gene (YFP) at the ubiquitously expressed ROSA locus 
[18]. Genotyping was performed by PCR using gDNA obtained 
from the tail biopsy or cerebellum. The wildtype and floxed al-

leles were detected as 600 bp and 325 bp fragments, respectively 
(Table 1).

The TAM-activated Cre enzyme excised the stop cassette flanked 
by two loxP sites and permitted YFP expression in Gli1-expressing 
cells. Cre-mediated recombination was validated using a 750 bp 
PCR product with gDNA isolated from the cerebellum. Such PCR 
products were not detected in the cerebral cortex, suggesting that 
the Gli1 promoter is active only in the cerebellum (Fig. 1C). Con-
sistently, in the sagittal sections of Gli1CreERT2 /+:: R26RYFP /+ brain, 
YFP expression was detected only in the cerebellar cortex, includ-
ing the ML, PCL, and GCL, but not in the white matter or other 
brain regions (Fig. 1D). The results indicated that administration 
of TAM during early postnatal periods induces recombination in 
the cerebellar cortex.

Gli1 active cells in early postnatal cerebellum 

The proliferation of GCPs reaches its peak at P4-8 in response to 
Shh produced by PCs [22]. To determine the cell types responsive 
to Shh in early postnatal period, we administered TAM at the peak 
time of the GCP proliferating period (P4~7) and sacrificed the 
mice at P9 (Fig. 2A). YFP expression was detected in proliferating 
GPCs in EGL. YFP+ cells migrated to the GCL and became fully 
differentiated NeuN+ GCNs. YFP expression was also detected in 
radially extending fibers in the ML and soma of GFAP+ BGs in the 
PCL (Fig. 2C and 2D). YFP was not expressed in Pcp2+ PCs in the 
PCL (asterisks in Fig. 2D”) or parvalbumin (PV)+ including GAB-
Aergic inerneurons and PCs (Fig. 3). These results suggest that the 
administration of tamoxifen during early postnatal days induces 
expression of Cre recombinase in Gli1-expression GCPs and BGs, 
but not in other types of cells in the developing cerebellum.

Cerebellar granule cells- and Bergmann glial cells- specific 

expression of Cre recombinase activity

To determine the duration of Shh-responsiveness, we adminis-
tered TAM at two distinct time points: during P4~7, when GCPs 
in the EGL migrated to the internal GCL and during P19~22 when 
EGL no longer existed [23]. YFP expression that was induced by 
TAM at P4~7 in GCPs and BGs was maintained in GCNs and 
BGs in the mature brain at P25 (Fig. 4B and 4D). In contrast, TAM 
administration at P19~22 induced YFP expression only in BGs, 
but not in GCs (Fig. 4C and 4E). For quantification, we performed 
additional staining with anti-S100β. GFAP and S100β revealed 
the same cell population with distinctive immunoreactivity: 
S100β in the somata and proximal processes of BGs and GFAP 
in the arborized glial fibers. TAM injection at P4~7 induced YFP+ 
expression in 15.1±1.4% of NeuN+ GCNs and 18.0±1.8% of BGs 
(Fig. 4F and 4G). The specificity of YFP expression was high thus 
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most YFP+ cells in GCL or PCL were NeuN+ GCN (98.6±0.46%) 
or BGs (100%), respectively. When TAM was injected at P19~22, 
the YFP+ expression was found in 45.8±2.9% to BGs in PCL with 
99.5±0.47% specificity. None of GCNs were co-localized with YFP 
expression. The results indicated that Shh signaling is temporarily 
active in the proliferation of GCP and BG during the early postna-
tal period and constitutively active only in BGs.

DISCUSSION

This study showed that timed postnatal administration of TAM 
differentially regulates cell-type-specific excision of floxed genes 

in the developing cerebellar cortex. TAM administration at early 
postnatal days (P4~7), when the GCP proliferation peaks in the 
EGL, can induce the expression of Gli1-mediated Cre recombi-
nase in GCPs of EGL and BGs in PCL. Thus, tamoxifen admin-
istration during postnatal days (P19~22), when EGL is almost 
depleted, leads to the expression of YFP only in BGs. Our results 
are consistent with the previous finding that Gli1 expression is 
restricted to proliferating GCPs and BGs in the developing cer-
ebellar cortex in response to Purkinje-derived Shh in postnatal 
stages through adulthood [10, 13, 24, 25]. Importantly, YFP+ GCPs 
in the EGL inwardly migrate to and differentiate NeuN+ GCNs in 
the GCL, where they remain as YFP+ GCNs to adulthood (Fig. 2). 
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Fig. 1. (A) Generation of inducible Gli1CreERT2/+::  R26RYFP/+ mice. (A) Breeding scheme for generation of Gli1CreERT2/+::  R26RYFP/+ mice to confirm the Cre 
activity according to tamoxifen induction. (B) Schematic experimental design for the tamoxifen injection time points used in Gli1CreERT2/+::  R26RYFP/+ 
mice. Pups were orally injected TAM on P4~7. Pups were sacrificed to collect the brain and tail samples at different indicated time points. (C) Repre-
sentative genotyping results of offspring from R26RYFP/YFP reporter and Gli1CreERT2/+ crosses. Genomic DNA (gDNA) from brain regions (cerebellum and 
cortex) and tail were examined by PCR for recombination of floxed alleles in Gli1CreERT2/+::  R26RYFP/+ mice. Recombinant ΔR26R-YFP, which indicates 
the transgene of cre-mediated recombination driven by Gli1 activation was observed in cerebellum but not in cerebral cortex and tail of Gli1CreERT2/+::  
R26RYFP/+ mice. Mice not expressing Cre from parallel breeding were taken as control (lane 1). (D~D”) Sagittal whole-brain images from tamoxifen in-
jected Gli1CreERT2/+::  R26RYFP/+ mouse at P25, indicating that Cre-recombinase is selectively expressed in the cerebellum. Green fluorescence, YFP signal 
indicates Cre-mediated recombination. Counterstaining was performed using Bisbenzimide (Hoechst 33342) dye. (D’) YFP signal was dominantly 
detected in cerebellar cortex of Gli1CreERT2/+::  R26RYFP/+ mice. Boxed region denotes enlarged area in D”. D” showed each layer of cerebellum expressing 
YFP signal. P, postnatal day; TAM, tamoxifen; IHC, Immunohistochemistry; CB, cerebellum; CTX, cerebral cortex; OB, Olfactory bulb; HP, Hippocam-
pus; TH, thalamus; HY, Hypothalamus; MB, Midbrain; P, Pons; M, Medulla; ML, Molecular layer; PCL, Purkinje cell layer; GCL, Granule cell layer. Scale 
bars=1 mm in D and D’, 0.2 mm in D”. 
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As mentioned earlier, proteins with long half-lives in the synaptic 
compartment [17] may remain in postmitotic GCNs even after 
the mRNA and protein are no longer synthesized. Gli1-CreERT2 
may be advantageous for inducing genuine deficiency of the gene 
products by targeting GCPs, and the protein products are diluted 
during cell division. 

Shh-Gli1 signaling in the developing cerebellum

All cerebellar neurons are generated from progenitors in two 
distinct germinative centers in the hindbrain: the rhombic lip and 
the ventricular zone [5, 26]. The progenitor cells in the rhombic 
lip express Math-1 (mouse homolog-1 of Drosophila Atonal) and 
generate glutamatergic neurons, including projection neurons in 
deep cerebellar nuclei, unipolar brush cells, and GCNs in the GCL 

Fig. 2

P4-7           P9 P0

TAM IHC

A

B

EGL

ML/
PCL

GCL

YFP NeuN GFAP YFP GFAP PCP2

C’’

C’

C

D’’

D’

D

* * ** *

Ⅱ

Ⅲ

Ⅳ/Ⅴ

Ⅵ

Ⅹ Ⅸ

Ⅷ

Ⅶ

Fig. 2. Gli1-mediated Cre recombination in proliferation EGL, ML, and GCL. (A) Schematic experimental design for the tamoxifen injection time 
points used in Gli1CreERT2/+::  R26RYFP/+ mice. Pups were orally injected TAM at P4-7 and sacrificed at P9 to analyze the YFP-expressing cells. (B) YFP la-
beled cells following tamoxifen injection are dominantly distributed in EGL, ML, and GCL in cerebellar cortex of the P9 Gli1CreERT2/+::  R26RYFP/+ pups. 
The lobules of vermis are identified by Roman numerals (II-X). Boxed region denotes enlarged area in C and D. (C, D) Triple staining for YFP, NeuN (a 
marker for GCs), PCP2 (a marker of PCs) and/or GFAP (a marker of BGs) of sagittal cerebellum of Gli1CreERT2/+::  R26RYFP/+ showed that YFP signal was 
colocalized with NeuN+ proliferating GCPs in EGL (C), differentiated GCNs in ML (C’~C”), GFAP+ BGs in ML/PCL (D~D”), but not in PCP2+ PCs 
(D and D”). Boxed region in C and D denotes enlarged area in C’, C”, D’ and D”. In D”. Asterisks indicated soma of PCs. P, postnatal day; TAM, tamoxifen; 
IHC, Immunohistochemistry; EGL, external granule cell layer; ML, Molecular layer; PCL, Purkinje cell layer; GCL, Granule cell layer. Scale bars=500 μm 
in B, 50 μm in C and D, 20 μm in C’~D”.
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[27, 28]. The progenitor cells in the ventricular zone generate all 
GABAergic phenotypes, including PCs, nucleo-olivary projection 
neurons, and all inhibitory interneurons, astrocytes, and oligoden-
drocytes in the white matter [29, 30]. Shh produced by PCs acts as 
a mitogen on progenitor cells originating from the rhombic lip and 
ventricular zone [24, 31] affects Bergmann glial differentiation [12]. 
Based on Gli1 expression, a high level of positive Shh signaling is 
restricted to the proliferating GCPs and BGs in developing cer-
ebellar cortex [13, 24]. Only BGs have been shown to be capable of 
responding to PC-derived Shh signals in postnatal stages through 
adulthood [25]. Consistently, TAM activates Gli1-CreERT2  in 
Shh-responsive GCPs in the EGL and BGs in the PCL (Fig. 1 and 
2). Shh is also known to exert a proliferative function on neural 
stem cell-like progenitors in the white matter around P1~2 [9, 15, 
32]. These progenitor cells (Tnc+, CD133+) give rise to GABAergic 
progenitor cells (Ptf1a+) and astrocyte precursors (Tnc+, CD15+), 
which eventually differentiate into interneurons, oligodendrocytes, 

astrocytes, and BGs [9, 30, 33]. Thus, TAM administration at P1-3 
activates Gli1-CreERT2  in these progenitor cells, leading to the 
expression of reporter genes in interneurons and astrocytes [15]. 
However, we did not detect YFP expression in GABAergic neu-
rons when TAM was administered at P4~7 (Fig. 3). Our results are 
consistent with the notion that the entire repertoire of GABAergic 
interneurons in the cerebellar cortex is generated before P7 with a 
peak around P5 [29, 30, 34]. Importantly, timed administration is 
critical to conditionally knockout the target genes in glutamatergic 
GCNs without affecting gene expression in GABAergic interneu-
rons.

Cre-mediated knockout for the study of cerebellar cortex 

Several Cre lines have been used to knock out genes in specific 
cell types in the cerebellum (Table 2): GABAα6-Cre and Math1-
Cre for deletion in GCNs [35-38], and Pcp2/L7-Cre and Shh-
Cre for deletion in PCs [15, 39-41]. While GABAα6-Cre is useful 

Fig. 3. Gli1-mediated Cre recombination in ML. (A) Schematic representation of the experimental design. Pups were injected with TAM at P4~7. Brain 
sections were prepared for analysis at the P13. (B) YFP signal was not found in either PV+ neurons (PCs and GABAergic interneurons in ML) and PCP2+ 
PCs. Arrows indicate PV+ inhibitory interneurons (basket and stellate cells) in ML, and asterisks indicate soma of PCs. Scale bar: 50 μm.

A P4-7           P13 P0

TAM IHC

YFP PV PCP2

* * * * **** * * * **** * * * ***

B

Fig. 3



209www.enjournal.orghttps://doi.org/10.5607/en21017

Gli1-CreER System for Cerebellum-specific Deletion

Fig. 4. Gli1-mediated Cre recombination in GCNs and BGs. (A) Schematic experimental design for the tamoxifen injection time points used in Gli1Cre-

ERT2/+::  R26RYFP/+ mice. Pups were orally injected with TAM at P4~7 (left, for B and D) or P19~22 (right, for C, E), and sacrificed at P25 to analyze the YFP-
expressing cells. (B~E) Tamoxifen injection at different time point led to YFP labeled cells that were cerebellar cell-type and specifically regulated Cre-
mediated recombination in P25 Gli1CreERT2/+::  R26RYFP/+ cerebellum. Similar to P9 cerebellum, injection of TAM at P4~7 allowed YFP expression which 
was induced in NeuN+ GCNs (Fig. B~B”), GFAP+ BGs (D~D”), but not in PCP2+ PCs (D), whereas late administration of TAM at P19~22 led to detec-
tion of YFP signal in GFAP+ BGs (E~E”), but not in any of GCNs (C~C”) and PCs (E) in P25 Gli1CreERT2/+::  R26RYFP/+ cerebellum. Boxed region in C~E 
denotes enlarged area in C’~E”. Scale bars=50 μm in B~E, 20 μm in B’~E”. (F~G) Colocalization of YFP+ cells were assessed with confocal images from 
4~6 from sagittal sections of 2~3 animals per group as mentioned in the Methods. The specificity and coverage of YFP expression in NeuN+ GCNs and 
in S100β+ are shown means±SEM.
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for late-onset Cre expression in mature GCNs, Math1-CreER 
and NSE-CreERT2 are useful for targeting GCPs that give rise to 
GCNs in GCL [35, 38]. However, Cre enzymes are also expressed 
in the non-cerebellar area in these mouse lines, such as the hip-
pocampus, midbrain, medulla, spinal cord, and inner ear [27, 38, 
42]. Unlike GCPs or GCNs, the Gli1 promoter is constitutively 
active in BGs. Thus, TAM administration around the weaning 
phase (P19~22) induces YFP expression in BGs. Several inducible 
Cre lines have been utilized for the study of gene function in BGs 
and specific types of astrocytes. While GFAP-CreER [21, 43] and 
GLAST-CreER [44] induce recombination in BGs and astrocytes 
in a wide area of the brain, TNC-CreER can limit the reporter 
gene expression to the BGs and/or GABAergic interneurons in the 
cerebellum, depending on TAM administration [15]. 

The perspective application of Gli1-CreERT2

The cerebellum is the largest sensorimotor structure in the brain 
and has extensive connections with the brainstem and spinal 
cord. The cerebellum plays an important role in coordinating 
skilled voluntary movements by influencing muscle activity and 
controlling equilibrium and muscle tone through connections 
with the vestibular system and the spinal cord and its gamma mo-
tor neurons. Recently, there has been rapidly increasing evidence 
indicating the role of the cerebellum in emotion and cognition in 
addition to movement [49, 50]. Long-term depression (LTD) is 
considered a cellular mechanism for cerebellar motor learning and 
is expressed as reduced responsiveness to transmitter glutamate 
[51, 52]. In particular, PF-PC synapses are well-known sites for 

LTD [53]. Intensive studies using Pcp2/L7-Cre have revealed that 
the molecular machinery, including Ca2+ influx, protein kinase C, 
and endocytosis of AMPA-type glutamate receptors play critical 
roles in postsynaptic PCs [41]. By comparison, the presynaptic 
roles of PF in LTD induction are relatively unknown. 

We show that Gli1-CreERT2 system can be applicable to condi-
tional deletion of genes from cerebellar GCNs and/or BGs without 
altering gene expression in the non-cerebellar area and TAM treat-
ment window of P4~7 allows excitatory GCN-specific deletion 
without affecting gene expression in GABAergic interneurons or 
PCs. We also propose that Gli1-CreER T2 can provide a tool to 
identify the molecular and cellular events in presynaptic PFs by 
allowing selective deletion of synaptic proteins with long half-lives 
in GCNs.
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Table 2. Mouse lines expressing Cre recombinase in the cerebellum

Mouse line TAM @ GCN BG PC IN References

Gli1-CreERT2 P1~3 V V* SC, BC [15]
P4~7 V V This study
Adult V This study, [16]

NSE-CreERT2 P1~3 V [42]
Adult V [42]

Math1-CreER P1~3 V UBC [15]
GFAP-CreER P4~7 V* [45]

Adult V [43]
GLAST-CreER P1~3 V* SC, BC, UBC [44]

P4~7 V* [44]
Adult V [46, 47]

TNC-CreER P1~3 V * SC, BC [15]
GABAα6-Cre NA V [35, 36]
Math1-Cre NA V UBC [37, 38]
GFAP-Cre NA V V* [48]
Pcp2/L7-Cre NA V [39, 40]
Shh-Cre NA V [15]

GCN, granule cell neuron; BG, Bergman glia; PC, Purkinje cell; IN, interneuron; *, cerebellar astrocyte; SC, stellate cells; BC, basket cell; UBC, Unipolar 
brush cells located in GCL; NA, not applicable.
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