Potentiometric Biosensor for Detection of L-Malate and D-Isocitrate Employing CO$_3^{2-}$-Selective Electrode and Enzyme Immobilization in Flow Injection Analysis

In-Sook Kwon* and Meera Kim*

Dept. of Food and Nutrition, Andong National University, Kyungbuk 760-049, Korea
*Dept. of Food Science and Nutrition, Kyungpook National University, Taegu 702-701, Korea

Abstract

Ion-selective electrodes (ISEs) are simple electrochemical devices for the direct measurement of ions in the samples. A novel potentiometric biosensor for the determination of L-malate or D-isocitrate has been developed by using CO$_3^{2-}$-ISE system was composed of a pump, an injector, a malic enzyme or isocitric dehydrogenase enzyme reactor, a CO$_3^{2-}$-ISE, a pH/mV meter, and an integrator. The various factors, such as buffer capacity, types of plasticizer and polymer, were optimized for the CO$_3^{2-}$ selectivity. In this novel CO$_3^{2-}$-ISE-FIA system, the potential difference due to the amount of CO$_3^{2-}$ produced from each enzyme reaction was proportional to the amount of L-malate or D-isocitrate.

Key words: L-malate, D-isocitrate, flow injection analysis, ion-selective electrode, enzyme immobilization

INTRODUCTION

Among the various organic acids in fruits and its products, L-malate and D-isocitrate are the main components which affect the flavor of the fruits. Especially, the amount of L-malate, which is abundant in apple, grape, and wine, changes during the maturation of the fruits or the fermentation of wine(1). Since L-malate concentration decreases continually during storage due to decomposition by microorganisms, L-malate determination can be used for the estimation of shelf-life(2). D-isocitrate can be also formed as a by-product of the fermentative production of citric acid(3). To qualify the good status of fruits and its products, it is helpful to develop the biosensor to measure even the small amount of L-malate or D-isocitrate in the foods.

FIA is the analytical method which involves the injection of a sample directly into a flowing reagent stream which carries the sample to a suitable analytical detector. With the use of accurate injector connecting tubing, small volume flow-through detectors, and consistent flow rates, an FIA system offers rapid assay time and high precision, and even requires small volume (<200μl) of sample(4–6). Polymer membrane-type ISEs are also relatively simple electrochemical probes that can be used for the direct measurement of ions in complex samples(7,8). The separation of ions would give changes in electrical potential, which is the principle of the ion selective membrane (ISM) electrodes. An appropriate lipophilic ionophore is dissolved in an organic solution and a membrane is prepared by evaporating the solution. The membrane is placed between the sample solution and an internal reference solution and the produced membrane potential can be the indicator of the activity of analyte ions in the sample(9).

So far, most of studies for malate determination for which enzyme reactor was used, have been made on the development of such sensors on which malate dehydrogenase (MDH, EC1.1.1.37), which catalyzes the dehydrogenation of L-malate by NAD$^+$, was immobilized:

$$\text{L-malate} + \text{NAD}^+ \xrightarrow{\text{MDH}} \text{oxaloacetate} + \text{NADH} + \text{H}^+$$

The consumed malic acid was measured by the fluorescence(2), the chemiluminescence(10), the spectrophotometry(11–13), or by using an oxygen probe for the formed NADH(14,15). For the determination of isocitrate and citrate, an oxygen electrode using the coimmobilized horseradish peroxidase and D-isocitrate
dehydrogenase(16) and a modified H₂O₂ electrode using the reaction of citrate lyase were used, respectively.(17)

In the present study, the measurement of carbonate ions(CO₃²⁻) using a CO₃²⁻–ISE equipped with CO₃²⁻–ISM which contains the CO₃²⁻ ion carrier that responds to CO₃²⁻ with the specific selectivity(18) was used for the determination of L-malate or D-isocitrate according to the following equations. L-Malate and D-isocitrate are oxidatively decarboxylated by malic enzyme(EC1.1.1.40) or isocitric dehydrogenase(EC1.1.1.42) to produce carbonate ions(CO₃²⁻), respectively.

\[
\begin{align*}
\text{L-malate} + \text{NADP}^+ \xrightarrow{\text{malic enzyme}} & \text{pyruvate} + \text{NADPH} + \text{CO}_2 + \text{H}^+ \\
\text{D-isocitrate} + \text{NADP}^+ \xrightarrow{\text{isocitric dehydrogenase}} & \text{α-ketoglutarate} + \text{NADPH} + \text{CO}_2 \\
\text{CO}_2 + \text{H}_2\text{O} & \rightarrow \text{CO}_3^{2-} + \text{H}^+ + \text{H}^+
\end{align*}
\]

Therefore, the measurement of CO₃²⁻ by the potential difference caused from CO₃²⁻ production by the malic enzyme or isocitric dehydrogenase can be correlated with the amount of substrates and can be used for the determination of L-malate or D-isocitrate in the CO₃²⁻-ISE–FIA system. For the optimized detection of L-malate or D-isocitrate, experimental parameters for the CO₃²⁻-ISM, such as the working buffer capacity(pH), the plasticizer, and the polymer were optimized.

MATERIALS AND METHODS

Reagents

All of solutions were made with distilled water. For the enzyme reactor, NADP–dependent malic enzyme (from chicken liver) and isocitric dehydrogenase(from porcine heart), glutaraldehyde and N–(2–aminoethyl)–3–amino propyl glass were purchased from Sigma Chemical Co.(USA). For the preparation of the polymer CO₃²⁻–ISM, carbonate ionophore IV(trifluoroacetyl–p–butyl)benzene, TFABB, tridodecylmethylammonium chloride(TDMACl), bis(2-ethylhexyl) sebacate(dioctyl sebacate, DOS), polyvinylchloride(PVC) and tetrahydrofuran(THF) were purchased from Fluka Chemika(Switzerland). A carrier buffer (1 mM phosphate buffer, pH 7.4) which was used in the CO₃²⁻–ISE–FIA system, was made with K₂HPO₄ and KH₂PO₄ both from Fluka BioChemica(Switzerland). KCl (0.1 M) and Na₂CO₃(10⁻⁵–10⁻¹M) were used as electrolyte and standard solutions, respectively. L-Malic acid (L-hydrobutanediolic acid, monosodium salt), three-Ds (+)-isocitric acid(Ls(4)isocitric acid, monopotassium salt) and β-nicotinamide adenine dinucleotide phosphate(β–NADP) were purchased from Sigma Chemical Co.

Preparation of CO₃²⁻–ISE and construction of CO₃²⁻–ISE

A CO₃²⁻–selective polymer membrane for a flow–through CO₃²⁻–ISE was cast using the conventional method for ISE membrane preparation(19,20). The casting solution of ISE membrane was made by dissolving TFABB(6.3 mg) and TDMACl(3.1mg) as the ion transfer agents, DOS (92.6mg) as a plasticizer, and PVC(53mg) as a polymer into THF(2ml). The casting solution was mixed thoroughly and pipetted into the glass cutter(i.d . 2.5cm) which was put on the glass board. The casting solution was allowed overnight for evaporating THF, resulting in a plasticized PVC polymer CO₃²⁻–ISM. A flow–through CO₃²⁻–ISE was constructed by a modified method of Meyerhoff and Kovach(4) and Meyerhoff et al.(21). Small disk(i.d., 7 mm) of polymer membrane was cut and then mounted into the tip of the Philips electrode body(IS–561, Glasblaserei Moller, Switzerland). KCl solution(10⁻² M) was used as the internal filling solution for CO₃²⁻–ISE. The electrode was soaked in the same 10⁻² M KCl solution for a few hours prior to use. The home–made flow–through ISE cell jacket was covered at the sensing part of the CO₃²⁻–ISE. This assembly is shown in Fig. 1.

Enzyme immobilization

A modified Chemnitzus and Schmid’s method(2) was used for enzyme immobilization. N–(2–Aminoethyl)–3–amino–propyl glass(protein sequencing reagent, 0.2g) was treated with 2.5% glutaraldehyde(5ml) in 0.1 M phosphate buffer(pH 7.4) for 2 hr at 22°C; this treatment made the peptide bonds between amino group(NH₂) of the long chain glass beads and the aldehyde group (–CHO) of glutaraldehyde. After treatment, the glass beads were washed with the deionized–distilled water to remove the unreacted glutaraldehyde. Malic enzyme (30units) dissolved in 0.1M phosphate buffer(pH 7.4, 5ml) was added to the treated glass beads to react for another 2 hours in the refrigerator at 4°C. At this time, the cross–linkage bond between another aldehyde group of glutaraldehyde and amino group of enzyme was made. The enzyme–supported glass was washed with 0.1 M
phosphate buffer (pH 7.4) after treatment and then packed into the teflon tubing (i.d. 2.0mm, length 10cm). The coupling efficiency of the enzyme, which was 95.4%, was measured by the Bradford method (22). The enzyme reactor was filled with the buffer and stored at 4°C.

CO$_3^{2-}$-ISE-FIA system

A schematic diagram of the CO$_3^{2-}$-ISE-FIA system for measurement of L-malate or D-isocitrate is shown in Fig. 2. The system consisted of the carrier buffer, the peristaltic pump (IPC-N-8-IV 34; Ismatec SA, Switzerland), the syringe loading sample injector (Model 7725I, Rheodyne, USA) equipped with a 100μl sample injection loop, the enzyme reactor, the CO$_3^{2-}$-ISE covered with a flow-through cell jacket, a single junction reference electrode (Model 90-01, Orion Research Inc., USA), the pH/mV meter (Mettler Delta 350, Mettler-Toledo Ltd, England) and the integrator (BD 40, Kipp & Zonen, Holland). A Tygon tubing (i.d. 0.89mm) was used to connect the whole flow system. As carrier buffer, 1 mM phosphate buffer was used for both malic enzyme and isocitric dehydrogenase reactions. The enzyme reactor was maintained at 22°C. A few drops of 0.1 M KCl solution was added to the distilled water reservoir. To eliminate pulsating noise in the electrodes and in the streaming potentials which was associated with the flow of solution across the surface of ISM, the system was grounded in any place when it needed (4). The sample solution (10$^{-1}$ ~ 10$^{-4}$ M Na$_2$CO$_3$ standards, 10$^{-1}$ ~ 10$^{-3}$ M malate/NADP, or 10$^{-1}$ ~ 10$^{-5}$ M isocitrate/NADP) was injected into a carrier stream through the injector. The flow rate was 15.9ml/hr or 26.4ml/hr. Potentiometric measurements were made by connecting the CO$_3^{2-}$-ISE and the reference electrode to pH/mV meter and the response of CO$_3^{2-}$-ISE was measured as a relative potential compared to a single junction Ag/AgCl reference electrode. After enzyme reaction, the formed CO$_3^{2-}$ was selective to the CO$_3^{2-}$-ISE and then monitored at the detector, a pH/mV meter. Data was obtained by plotting the changed potential from the baseline or the potential differences from the baseline to the peak height versus log concentration of the sample. Several parameters for CO$_3^{2-}$ selectivity, such as the carrier buffer, a plasticizer, and a polymer, were tested. For the optimal selectivity of the CO$_3^{2-}$-ISM, three buffer solutions (1 mM Tris/HCl, pH 7.4; 1 mM phosphate buffer, pH 7.4; 1 mM Tris/H$_2$SO$_4$, pH 8.7), two plasticizers (α-NPOE and DOS), and two polymers (PVC and polyurethane) were tested, respectively.

For the optimization of plasticizer and buffer for CO$_3^{2-}$ selectivity of CO$_3^{2-}$-ISM, both the reference electrode and CO$_3^{2-}$-ISE were connected to the pH/mV meter and, at the same time, were immersed in 50ml of 1 mM phosphate buffer solution (pH 7.4). Standard solutions were added into the buffer solution with the sequential concentrations (10$^{-5}$ ~ 10$^{-1}$ M Na$_2$CO$_3$) while stirring the buffer solution with a magnetic bar and the data was acquired from the four experiments. For the optimization of polymer for CO$_3^{2-}$ selectivity and the determination of CO$_3^{2-}$-ISE-FIA system for determination of L-malate or D-isocitrate.

![Fig. 2. Scheme of CO$_3^{2-}$-selective electrode (ISE) in FIA system for determination of L-malate or D-isocitrate.](image-url)
Biosensor for Detection of L-Malate and D-Isocitrate

Fig. 3. Effect of the different plasticizer on the CO$_3^{2-}$ selectivity in ISM.

Calibration curve was obtained by measurement of the potential differences from the baseline to the changed potentials by the CO$_3^{2-}$-ISE. Each value is a mean for four replicates. Conditions: 1 mM Tris/HCl buffer(pH 7.6) containing 0.1 M KCl at 22$^\circ$C; stirring rate, 100 rpm; -NPOE(-nitrophenyl(octyl)ether), DOS(diocetyl sebacate).

of L-malate and D-isocitrate, standard solutions and substrate/NADP were tested in the CO$_3^{2-}$-ISE-FIA system. The data was acquired from five experiments.

RESULTS AND DISCUSSION

Optimizing the factors for CO$_3^{2-}$ detection

Effect of plasticizer in ISM

Fig. 3 shows the effect of the plasticizer in ISM for the CO$_3^{2-}$ selectivity in the standard sample solution and the data represents as the mean of four replicates. The addition of plasticizer can make the membrane behave like a liquid and thus the properties of the membrane electrode are very similar to those of the wet membranes (9). σ-NPOE-containing ISM electrode showed higher CO$_3^{2-}$-selectivity than DOS-containing ISM electrode in lower concentration of standard solution($10^{-3} \sim 10^{-5}$ M Na$_2$CO$_3$), but they didn't show any differences in higher concentration($10^{-2} \sim 10^{-1}$ M Na$_2$CO$_3$). This result might be due to higher dielectric constant of σ-NPOE than that of the DOS which means σ-NPOE-containing ISM electrode would show the less electrical resistance in the carrier buffer than DOS-containing ISM electrode would show in the carrier buffer. DOS-containing ISM still showed high correlation ($r=0.956$; 5 points) between the Na$_2$CO$_3$ concentration and the produced potential with the wide range of the potential changes(ca. Δmv, 131 mV from 10^{-5} to 10^{-1} M), although it didn't show as much high as the correlation of σ-NPOE-containing ISM($r=0.984$; 5 points) did. Therefore, DOS would be considered as proper plasticizer for usage because σ-NPOE-containing ISM showed darker yellow color and stiffer texture than DOS-containing ISM did.

Effect of buffer

The pH variance of the buffer is important for both the production of CO$_3^{2-}$ and enzyme reaction. The optimal pH range for the reaction of the malic enzyme or the isocitric dehydrogenase is about pH 7.4, while the optimal level for the CO$_3^{2-}$ production is pH 8.7. There was no differences on the CO$_3^{2-}$ production between 1 mM Tris/HCl and 1 mM phosphate buffer both of which were
within the same pH range (data not shown). Since Cl\(^-\) in 1 mM Tris/HCl could increase the buffer capacity, which means 1 mM Tris/HCl buffer might decrease the detection limit for the measurement of the produced \(\text{CO}_3^{2-}\), and 1 mM phosphate buffer would be better than 1 mM Tris/HCl was. As shown in Fig. 4, the detection limit of 1 mM phosphate buffer was better than that of 1 mM Tris/HCl. Hence the optimal carrier buffer for the \(\text{CO}_3^{2-}\) detection was 1 mM phosphate buffer.

Effect of polymer in ISM

The polymer matrices can enable the covalent attachment of ion transfer agents and thus can affect the \(\text{CO}_3^{2-}\) selectivity of the \(\text{CO}_3^{2-}\) ionophore (TFABB) and the anion carrier (TDMACI). The effect of two polymers (PVC and polyurethane) in the \(\text{CO}_3^{2-}\)-ISM was tested. Even though \(\text{CO}_3^{2-}\) selectivity of two different polymers in the \(\text{CO}_3^{2-}\)-ISM was not much different at low standard concentration (10\(^{-3}\)–10\(^{-5}\) M \(\text{Na}_2\text{CO}_3\)), however, the PVC-containing ISM showed higher \(\text{CO}_3^{2-}\)-selectivity than the polyurethane-containing ISM did at high concentration of standard solution (10\(^{2}\)–10\(^{-1}\) M \(\text{Na}_2\text{CO}_3\)) (Fig. 5). Polyurethane was not easily dissolved in the membrane casting solution and the polyurethane-containing ISM was tinted light-brown color and even less flexible than the PVC-containing ISM. PVC was considered for the proper polymer for the maximal \(\text{CO}_3^{2-}\)-selectivity.

L-Malate and D-isocitrate measurement by using the \(\text{CO}_3^{2-}\)-ISE-FIA system

Under the above optimized \(\text{CO}_3^{2-}\)-ISE-FIA system for \(\text{CO}_3^{2-}\) selectivity, the determination of \(\text{CO}_3^{2-}\) with the standard solutions (10\(^{-4}\)–10\(^{-1}\) M \(\text{Na}_2\text{CO}_3\)) showed that the calibration curve was linear over the range 10\(^{-3}\)–10\(^{-1}\) M \(\text{Na}_2\text{CO}_3\) with a regression coefficient (4 points) of -0.952. The detection limit was 10\(^{-4}\) M \(\text{Na}_2\text{CO}_3\).

The relationship between the \(\text{CO}_3^{2-}\) production by the malic enzyme reaction and the concentration of L-malate/NADP in \(\text{CO}_3^{2-}\)-ISE-FIA system is shown in Fig. 6. The results showed a linear response within the range of 10\(^{-3}\)–10\(^{-5}\) M L-malate/NADP. The selectivity of \(\text{CO}_3^{2-}\) which responded to the various concentrations of L-malate/NADP was lower than that of the various

Fig. 5. Effect of the polymer in ISM on the \(\text{CO}_3^{2-}\)-ISE-FIA.

Potential difference was measured from the baseline to the potential peak which was caused by \(\text{CO}_3^{2-}\) production. Each value is a mean for five replicates. Conditions for \(\text{CO}_3^{2-}\)-ISE-FIA: carrier buffer, 1 mM phosphate buffer, pH 7.4; flow rate, 26.4 ml/hr; injection volume, 100 nl; at 22°C.

Fig. 6. Calibration curve of L-malate in \(\text{CO}_3^{2-}\)-ISE-FIA.

Potential difference from the baseline to the peak height by the \(\text{CO}_3^{2-}\) production due to the malic enzyme reaction was measured for each concentration of L-malate. NADP was injected with each of the same concentration of L-malate. Each value is a mean for five replicates. Conditions: carrier buffer, 1 mM phosphate buffer, pH 7.4; injection volume, 100 microliter; flow rate, 15.9 ml/hr; at 22°C.
concentrations of Na$_2$CO$_3$ standard solution. This results might be due to less CO$_3^{2-}$ production by the enzyme reactions that convert L-malate/NADP to pyruvate, NADPH and then finally CO$_3^{2-}$ owing to resistance to the enzyme reactor along with the flow or the enzyme reaction to the substrate.

The calibration curve for the CO$_3^{2-}$ production by isocitric dehydrogenase to the concentration of isocitrate/NADP in CO$_3^{2-}$-ISE-FIA system is shown in Fig. 7. A linear response was shown within the range of 10^{-1} to 10^{-5} M isocitrate/NADP, but any remarkable CO$_3^{2-}$ selectivity was not found below 10^{-4} M isocitrate/NADP. While the detection of L-malate showed a linear regression ($r=0.912$) between 10^{-1} to 10^{-3} M L-malate (5 points) (Fig. 6), isocitrate determination showed a correlation ($r=0.867$) (5 points) in a wider D-isocitrate concentration (10^{-1} to 10^{-5} M) (Fig. 7). Values in Fig. 6 and 7 are means ± SD (n=5).

This potentiometric CO$_3^{2-}$-ISE-FIA system using the immobilized-malic enzyme or isocitric dehydrogenase can be considered as the unique analytical device for the measurement of L-malate or D-isocitrate.

ACKNOWLEDGMENTS

This study was supported by the SGRP/HTDP (High-Technology Development Project for Agriculture, Forestry and Fisheries), No. 295165, 'Development of biosensors for quality evaluation of agricultural products' of the MAF- SGRP (Ministry of Agriculture Forestry and Fisheries-Special Grants Research Program) in Korea.

REFERENCES

(Received February 9, 1998)