p130 Mediates TGF-β-induced Cell-Cycle Arrest in Cervical Carcinoma Cells

Hyun Ho Choi, Hyun-Soon Jong, Sang Hyun Song, Yung-Jue Bang

Cancer Research Institute, Seoul National University College of Medicine, Seoul

Background The transforming growth factor-β (TGF-β) signaling pathway exerts an essential tumor suppressor function in various cell types. However, it has never been reported that TGF-β regulates the cellular proliferation in cervical cancer cells.

Methods The responses of 4 cervical carcinoma cancer cell lines (HT-3, CaSki, HeLaS3, and ME-180) by TGF-β were examined. Change of cell cycle distribution was analyzed, and the level of each protein and its association were assayed by Western blotting analysis and immunoprecipitation.

Results In the present study, we analyzed the effect of TGF-β on cervical carcinoma cell lines. TGF-β inhibited the proliferation of HT-3 cells expressing mutant Rb protein in a time-dependent manner. TGF-β (5 ng/ml) efficiently induced G1 arrest of the cell cycle. Protein level of p21 was increased in a time-dependent manner, but other G1 regulatory protein levels were not changed. TGF-β markedly enhanced the binding of p21 with cdk2 and decreased that of cdk2 with cyclin E. TGF-β inhibited the phosphorylation of p130 but did not change Rb and p107 protein status. We found that E2F-1 protein level was decreased in a time-dependent manner in TGF-β treated cells, and it might be resulted from the enhanced binding of E2F-4 with p130.

Conclusion Our results demonstrate that not Rb but p130 can mediate growth inhibition by TGF-β in Rb mutant HT-3 cells.