Cooperation of E2F-p130 and Sp1-pRb Complexes in Repression of the Chinese Hamster dhfr Gene

Young-Chae Chang

Department of Microbiology, Dankook University College of Medicine

Background In mammalian cells reiterated binding sites for Sp1 and two overlapping and inverted E2F sites at the transcription start site regulate the dhfr promoter during the cell growth cycle.

Method Here we have examined the contributions of the dhfr Sp1 and E2F sites in the repression of dhfr gene expression. In serum-starved cells or during serum stimulation, the Chinese hamster dhfr gene was not derepressed by trichostatin A (TSA), an inhibitor of histone deacetylase (HDAC).

Results Immunoprecipitation experiments showed that HDAC1 and hypo-phosphorylated retinoblastoma protein (pRb) are associated with Sp1 in serum-starved CHOC400 cells. In transfection experiments, reporter plasmids containing the reiterated dhfr Sp1 sites were stimulated 10-fold by TSA, while a promoter containing four dhfr E2F sites and a TATA box was responsive to E2F but was completely unaffected by TSA. HDAC1 did not coprecipitate with p130-E2F DNA binding complexes, the predominant E2F binding activity in cell extracts after serum starvation, suggesting that p130 imposes a TSA insensitive state on the dhfr promoter. In support of this notion, recruitment of GAL4-p130 to a dihydrofolate reductase-GAL4 reporter rendered the promoter insensitive to TSA, while repression by GAL4-pRb was sensitive to TSA. Upon phosphorylation of pRb and p130 after serum stimulation, the Sp1-pRb and p130-E2F interactions were lost while the Sp1-HDAC1 interaction persisted into S phase. Together these studies suggest a dynamic model for the cooperation of pRb and p130 in repression of dhfr gene expression during withdrawal from the cell cycle.

Conclusion We propose that, during initial phases of cell cycle withdrawal, the binding of dephosphorylated pRb to Sp1-HDAC1 complexes and complexes of E2F-1 -to -3 with DP results in transient, HDAC dependent suppression of dhfr transcription. Upon withdrawal of cells into G0, recruitment of p130 to E2F4/DP-1 complexes at the transcription start site results in a TSA-insensitive complex that cooperates with Sp1-HDAC-pRb complexes to stably repress dhfr promoter activity in quiescent cells.