ON THE CENTROID OF THE PRIME GAMMA RINGS

Mehmet Ali Öztürk and Young Bae Jun

Abstract. We define and study the extended centroid of a prime Γ-ring.

1. Introduction

2. Preliminaries

Let \(M \) and \(\Gamma \) be two abelian groups. If for all \(x, y, z \in M \) and all \(\alpha, \beta \in \Gamma \) the conditions

(i) \(x\alpha y \in M \),

(ii) \((x + y)\alpha z = x\alpha z + y\alpha z \), \(x(\alpha + \beta)z = x\alpha z + x\beta z \), \(x\alpha(y + z) = x\alpha y + x\alpha z \),

(iii) \((x\alpha y)\beta z = x\alpha(y\beta z) \)

are satisfied, then we call \(M \) a Γ-ring. By a right (resp. left) ideal of a Γ-ring \(M \) we mean an additive subgroup \(U \) of \(M \) such that \(U \Gamma M \subseteq U \) (resp. \(M\Gamma U \subseteq U \)). If \(U \) is both a right and a left ideal, then we say that \(U \) is an ideal of \(M \). For each \(a \) of a Γ-ring \(M \) the smallest right ideal containing \(a \) is called the principal right ideal generated by \(a \) and

Received September 8, 1999. Revised May 11, 2000.

2000 Mathematics Subject Classification: 16N60, 16W25, 16Y99.

Key words and phrases: extended centroid, symmetric bi-derivation, trace, quotient Γ-ring.
is denoted by $<a>_r$. Similarly we define $<a>_l$ (resp. $<a>$), the principal left (resp. two sided) ideal generated by a. An ideal P of a Γ-ring M is said to be prime if for any ideals A and B of M, $A\Gamma B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$. An ideal Q of a Γ-ring M is said to be semi-prime if for any ideal U of M, $UTU \subseteq Q$ implies $U \subseteq Q$. A Γ-ring M is said to be prime (resp. semi-prime) if the zero ideal is prime (resp. semi-prime).

Theorem 2.1. ([2, Theorem 4]) If M is a Γ-ring, the following conditions are equivalent:

(i) M is a prime Γ-ring.

(ii) If $a, b \in M$ and $a\Gamma M\Gamma b = (0)$, then $a = 0$ or $b = 0$.

(iii) If $<a>$ and $$ are principal ideals in M such that $<a>_\Gamma = (0)$, then $a = 0$ or $b = 0$.

(iv) If A and B are right ideals in M such that $A\Gamma B = (0)$, then $A = (0)$ or $B = (0)$.

(v) If A and B are left ideals in M such that $A\Gamma B = (0)$, then $A = (0)$ or $B = (0)$.

3. Centroids

Let M be a Γ-ring. A mapping $D(\cdot, \cdot): M \times M \to M$ is said to be symmetric bi-additive if it is additive in both arguments and $D(x, y) = D(y, x)$ for all $x, y \in M$. By the trace of $D(\cdot, \cdot)$ we mean a map $d: M \to M$ defined by $d(x) = D(x, x)$ for all $x \in M$. A symmetric bi-additive map is called a symmetric bi-derivation if $D(x_\alpha z, y) = D(x, y)\beta z + x_\beta D(z, y)$ for all $x, y, z \in M$ and $\beta \in \Gamma$. Since a map $D(\cdot, \cdot)$ is symmetric bi-additive, the trace of $D(\cdot, \cdot)$ satisfies the relation $d(x + y) = d(x) + d(y) + 2D(x, y)$ for all $x, y \in M$ and is an even function.

Let M be a prime Γ-ring such that $M\Gamma M \neq M$. Denote

$$\mathcal{M} := \{(U, f) \mid U(\neq 0) \text{ is an ideal of } M \text{ and } f: U \to M \text{ is a right } M\text{-module homomorphism}\}.$$

Define a relation \sim on \mathcal{M} by $(U, f) \sim (V, g) \iff \exists W(\neq 0) \subset U \cap V$ such that $f = g$ on W. Since M is a prime Γ-ring, it is possible to find a
On the centroid of the prime gamma rings

non-zero W and so "~" is an equivalence relation. This gives a chance for us to get a partition of M. We then denote the equivalence class by $Cl(U, f) = \hat{f}$, where $\hat{f} := \{g : V \to M|(U, f) \sim (V, g)\}$, and denote by Q the set of all equivalence classes. Now we define an addition "+" on Q as follows:

$$\hat{f} + \hat{g} = Cl(U, f) + Cl(V, g) = Cl(U \cap V, f + g)$$

where $f + g : U \cap V \to M$ is a right M-module homomorphism. Assume that $(U_1, f_1) \sim (U_2, f_2)$ and $(V_1, g_1) \sim (V_2, g_2)$. Then $\exists W_1(\neq 0) \subset U_1 \cap U_2$ such that $f_1 = f_2$; and $\exists W_2(\neq 0) \subset V_1 \cap V_2$ such that $g_1 = g_2$. Taking $W = W_1 \cap W_2$. Then $W \neq 0$ and

$$W = W_1 \cap W_2 \subset (U_1 \cap U_2) \cap (V_1 \cap V_2) = (U_1 \cap V_1) \cap (U_2 \cap V_2).$$

For any $x \in W$, we have $(f_1 + g_1)(x) = f_1(x) + g_1(x) = f_2(x) + g_2(x) = (f_2 + g_2)(x)$, and so $f_1 + g_1 = f_2 + g_2$ in W. Therefore $(U_1 \cap V_1, f_1 + g_1) \sim (U_2 \cap V_2, f_2 + g_2)$, which means that the addition "+" is well-defined.

Now we will prove that Q is an additive abelian group. Let $\hat{f} = Cl(U, f)$, $\hat{g} = Cl(V, g)$ and $\hat{h} = Cl(W, h)$ be elements of Q. Then

$$(\hat{f} + \hat{g}) + \hat{h} = Cl(U \cap V, f + g) + Cl(W, h)$$
$$= Cl((U \cap V) \cap W, (f + g) + h)$$
$$= Cl(U \cap (V \cap W), f + (g + h))$$
$$= Cl(U, f) + Cl(V \cap W, g + h)$$
$$= \hat{f} + (\hat{g} + \hat{h}).$$

Taking $\hat{0} := Cl(M, 0)$ where $0 : M \to M$, $x \mapsto 0$, for all $x \in M$ we have $\hat{f} + \hat{0} = Cl(U, f) + Cl(M, 0) = Cl(U \cap M, f + 0) = Cl(U, f) = \hat{f}$, and similarly $\hat{0} + \hat{f} = \hat{f}$. Hence $\hat{0}$ is the additive identity in Q. For any element $\hat{f} = Cl(U, f)$ of Q, it is easy to show that $-\hat{f} = Cl(U, -f)$ is an additive inverse of $f = Cl(U, f)$. Finally, for any elements $\hat{f} = Cl(U, f)$
and \(\hat{g} = Cl(V, g) \) of \(Q \), we have

\[
\hat{f} + \hat{g} = Cl(U, f) + Cl(V, g) \\
= Cl(U \cap V, f + g) \\
= Cl(V \cap U, g + f) \\
= Cl(V, g) + Cl(U, f) \\
= \hat{g} + \hat{f}.
\]

Therefore \(Q \) is an additive abelian group.

Since \(MTM \neq M \) and since \(M \) is a prime \(\Gamma \)-ring, \(MTM \neq 0 \) is an ideal of \(M \). We can take the homomorphism \(1_{TM} : MTM \to M \) as a unit \(M \)-module homomorphism. Note that \(M\beta M \neq 0 \) for all \(0 \neq \beta \in \Gamma \) so that \(1_{M\beta} : M\beta M \to M \) is non-zero \(M \)-module homomorphism. Denote

\[
\mathcal{N} := \{(M\beta M, 1_{M\beta}) | 0 \neq \beta \in \Gamma\},
\]

and define a relation \(\sim \) on \(\mathcal{N} \) by \((M\beta M, 1_{M\beta}) \sim (M\gamma M, 1_{M\gamma}) \iff \exists W := M\alpha M(\neq 0) \subset M\beta M \cap M\gamma M \) such that \(1_{M\beta} = 1_{M\gamma} \) on \(W \). We can easily check that \(\sim \) is an equivalence relation on \(\mathcal{N} \). Denote by \(Cl(M\beta M, 1_{M\beta}) = \hat{\beta} \), the equivalence class containing \((M\beta M, 1_{M\beta}) \) and by \(\hat{\Gamma} \) the set of all equivalence classes of \(\mathcal{N} \) with respect to \(\sim \), that is,

\[
\hat{\beta} := \{1_{M\gamma} : M\gamma M \to M | (M\beta M, 1_{M\beta}) \sim (M\gamma M, 1_{M\gamma})\}
\]

and \(\hat{\Gamma} := \{\hat{\beta} | 0 \neq \beta \in \Gamma\} \). Define an addition \(+ \) on \(\hat{\Gamma} \) as follows:

\[
\hat{\beta} + \hat{\delta} = Cl(M\beta M, 1_{M\beta}) + Cl(M\delta M, 1_{M\delta}) \\
= Cl(M\beta M \cap M\delta M, 1_{M\beta} + 1_{M\delta})
\]

for every \(\beta(\neq 0), \delta(\neq 0) \in \Gamma \). Then \((\hat{\Gamma}, +) \) is an abelian group. Now we define a mapping \((-, -, -) : Q \times \hat{\Gamma} \times Q \to Q, (\hat{f}, \hat{\beta}, \hat{g}) \mapsto \hat{f}\hat{\beta}\hat{g} \), as follows:

\[
\hat{f}\hat{\beta}\hat{g} = Cl(U, f)Cl(M\beta M, 1_{M\beta})Cl(V, g) \\
= Cl(V\Gamma M\beta M U, f1_{M\beta}g)
\]
where
\[V\Gamma M\beta M\Gamma U = \left\{ \sum v_i \gamma_i m_i \beta n_i \alpha_i u_i \mid v_i \in V, u_i \in U, m_i, n_i \in M \text{ and } \alpha_i, \gamma_i \in \Gamma \right\} \]
is an ideal of \(M \) and \(f1_{M\beta g} : V\Gamma M\beta M\Gamma U \to M \) which is given by
\[f1_{M\beta g}\left(\sum v_i \gamma_i m_i \beta n_i \alpha_i u_i \right) = f\left(\sum g(v_i) \gamma_i m_i \beta n_i \alpha_i u_i \right) \]
is a right \(M \)-module homomorphism. Then it is routine to check that such mapping is well-defined. We will show that \(Q \) is a \(\hat{\Gamma} \)-ring with unity. Let \(\hat{f}, \hat{g}, \hat{h} \in Q \) and \(\hat{\beta}, \hat{\gamma} \in \hat{\Gamma} \), i.e., \(\hat{f} = Cl(U, f), \hat{g} = Cl(V, g), \hat{h} = Cl(W, h), \hat{\beta} = Cl(M\beta M, 1_{M\beta}) \) and \(\hat{\gamma} = Cl(M\gamma M, 1_{M\gamma}) \). Then
\[
(\hat{f} + \hat{g})\hat{\beta}\hat{h} = (Cl(U, f) + Cl(V, g))Cl(M\beta M, 1_{M\beta})Cl(W, h)
= Cl(U \cap V, f + g)Cl(M\beta M, 1_{M\beta})Cl(W, h)
= Cl(W\Gamma M\beta M\Gamma(U \cap V), (f + g)1_{M\beta}h)
= Cl(W\Gamma M\beta M\Gamma \cap W\Gamma M\beta M\Gamma V, f1_{M\beta}h + g1_{M\beta}h)
= Cl(W\Gamma M\beta M\Gamma U, f1_{M\beta}h) + Cl(W\Gamma M\beta M\Gamma V, g1_{M\beta}h)
= \hat{f}\hat{\beta}\hat{h} + \hat{g}\hat{\beta}\hat{h},
\]
and the equalities \(\hat{f}(\hat{\gamma} + \hat{\beta})\hat{g} = \hat{f}\hat{\gamma}\hat{g} + \hat{f}\hat{\beta}\hat{g} \) and \(\hat{f}\hat{\beta}(\hat{g} + \hat{h}) = \hat{f}\hat{\beta}\hat{g} + \hat{f}\hat{\beta}\hat{h} \) are proved in an analogous way. Moreover we have
\[
(\hat{f}\hat{\gamma}\hat{g})\hat{\beta}\hat{h} = (Cl(U, f)Cl(M\gamma M, 1_{M\gamma})Cl(V, g))Cl(M\beta M, 1_{M\beta})Cl(W, h)
= Cl(V\Gamma M\gamma M\Gamma U, f1_{M\gamma}g)Cl(M\beta M, 1_{M\beta})Cl(W, h)
= Cl(W\Gamma M\beta M\Gamma (V\Gamma M\gamma M\Gamma U), (f1_{M\gamma}g)1_{M\beta}h)
= Cl((W\Gamma M\beta M\Gamma V\Gamma M\gamma M\Gamma U), f1_{M\gamma}(g1_{M\beta}h))
= Cl(U, f)Cl(M\gamma M, 1_{M\gamma})Cl(W\Gamma M\beta M\Gamma V, g1_{M\beta}h)
= Cl(U, f)Cl(M\gamma M, 1_{M\gamma})(Cl(V, g)Cl(M\beta M, 1_{M\beta})Cl(W, h))
= \hat{f}\hat{\gamma}(\hat{g}\hat{\beta}\hat{h}).\]
Next we will show that Q has an identity. Let $\hat{f} \in Q$ and $\hat{\beta} \in \hat{\Gamma}$. Take $\hat{I} = \text{Cl}(M, I) \in Q$ where $I : M \to M$, $x \mapsto x$, is a M-module homomorphism. Then

$$
\hat{f} \hat{\beta} \hat{I} = \text{Cl}(U, f)\text{Cl}(M\beta M, 1_{M\beta})\text{Cl}(M, I)
$$

$$
= \text{Cl}(MTM\beta M\Gamma U, f1_{M\beta I})
$$

$$
= \text{Cl}(U, f) = \hat{f},
$$

and similarly we have $\hat{I} \hat{\beta} \hat{f} = \hat{f}$. Hence Q is a $\hat{\Gamma}$-ring with identity. Noticing that the mapping $\varphi : \Gamma \to \hat{\Gamma}$ defined by $\varphi(\beta) = \hat{\beta}$ for every $0 \neq \beta \in \Gamma$ is an isomorphism, we know that the $\hat{\Gamma}$-ring Q is a Γ-ring. Finally we prove that M is a subring of Q. For a fixed element a in M and every element $\gamma \in \Gamma$, consider a mapping $\lambda_{\alpha\gamma} : M \to M$ defined by $\lambda_{\alpha\gamma}(x) = a\gamma x$ for all $x \in M$. It is easy to prove that the mapping $\lambda_{\alpha\gamma}$ is a right M-module homomorphism, so that $\lambda_{\alpha\gamma}$ is an element of Q. Define a mapping $\psi : M \to Q$ by $\psi(a) = \hat{a} = \text{Cl}(M, \lambda_{\alpha\gamma})$ for all $a \in M$ and $\gamma \in \Gamma$. Clearly ψ is well-defined. To prove ψ is one-to-one, it is enough to show that

$$
\ker\psi = \{a \in M \mid \psi(a) = \hat{0}\} = \{0_M\}.
$$

Let $a \in \ker\psi$. Then $\psi(a) = \hat{0}$, i.e., $\text{Cl}(M, \lambda_{\alpha\gamma}) = \text{Cl}(M, 0)$. It follows that $0_M = \lambda_{\alpha\gamma}(M) = a\gamma M$. Since M is a prime Γ-ring, we have $a = 0_M$ and so $\ker\psi = \{0_M\}$. In order to prove ψ is a homomorphism, let $\gamma, \beta \in \Gamma$ and $a, b \in M$. Then

$$
\lambda_{(a+b)\gamma}(x) = (a + b)\gamma x = a\gamma x + b\gamma x
$$

$$
= \lambda_{a\gamma}(x) + \lambda_{b\gamma}(x) = (\lambda_{a\gamma} + \lambda_{b\gamma})(x)
$$

and

$$
\lambda_{(ab)\gamma}(x) = (ab)\gamma x = a\beta(b\gamma x) = \lambda_{a\beta}(b\gamma x)
$$

$$
= \lambda_{a\beta}(1_{M\beta}(b\gamma x)) = \lambda_{a\beta}(1_{M\beta}(\lambda_{b\gamma}(x)))
$$

$$
= (\lambda_{a\beta}1_{M\beta}(b\gamma))(x)
$$

for all $x \in M$. It follows that $\lambda_{(a+b)\gamma} = \lambda_{a\gamma} + \lambda_{b\gamma}$ and $\lambda_{(ab)\gamma} =
\[\lambda_{a\beta}1_{M\beta}\lambda_{b\gamma}. \] Hence
\[
\psi(a + b) = \overline{a + b} = Cl(M, \lambda_{(a+b)\gamma})
= Cl(M \cap M, \lambda_{a\gamma} + \lambda_{b\gamma})
= Cl(M, \lambda_{a\gamma}) + Cl(M, \lambda_{b\gamma})
= \hat{a} + \hat{b} = \psi(a) + \psi(b)
\]

and
\[
\psi(a\beta b) = \overline{a\beta b} = Cl(M, \lambda_{(a\beta b)\gamma})
= Cl(M\Gamma M\beta M\Gamma M, \lambda_{a\beta}1_{M\beta}\lambda_{b\gamma})
= Cl(M, \lambda_{a\beta})Cl(M\beta M, 1_{M\beta})Cl(M, \lambda_{b\gamma})
= \hat{a}\beta\hat{b}
= \psi(a)\beta\psi(b). \quad [\Gamma \text{ is isomorphic to } \hat{\Gamma}].
\]

Therefore \(M \) is a subring of \(Q \), and in such case we call \(Q \) the quotient \(\Gamma \)-ring of \(M \).

Let \(M \) be any \(\Gamma \)-ring (in the sense of Barnes) and let \(E(M, \Gamma) \) be the set of endomorphisms of the additive group of \(M \). We can easily check that \(E(M, \Gamma) \) is a \(\Gamma \)-ring. For \(a \in M \), define maps \(R_a : M \to M \) and \(L_a : M \to M \) by \(R_a(m) = m\gamma a \) and \(L_a(m) = a\gamma m \), respectively, for all \(m \in M \) and \(\gamma \in \Gamma \). Then \(R_a, L_a \in E(M, \Gamma) \). Let \(B(M, \Gamma) \) be the subring of \(E(M, \Gamma) \) generated by all \(R_a \) and \(L_a \) for \(a \in M \).

Definition 3.1. The set of elements in \(E(M, \Gamma) \) which commute elementwise with \(B(M, \Gamma) \) is called the centroid of \(M \).

For purposes of convenience, we use \(q \) instead of \(\hat{q} \in Q \).

Lemma 3.2. Let \(M \) be a prime \(\Gamma \)-ring. For each non-zero \(q \in Q \), there is a non-zero ideal \(U \) of \(M \) such that \(q(U) \subseteq M \).

Proof. Straightforward.

Lemma 3.3. Let \(M \) be a prime \(\Gamma \)-ring. Then the quotient \(\Gamma \)-ring \(Q \) of \(M \) is a prime \(\Gamma \)-ring.
Proof. Let \(p, q \in Q \) be such that \(p\Gamma Q\Gamma q = 0 \). If \(p \neq 0 \neq q \), then there exist non-zero ideals \(U \) and \(V \) of \(M \) such that \(p(U) \subset M \) and \(q(V) \subset M \). Since \(p \neq 0 \neq q \), there exist non-zero elements \(u \in U \) and \(v \in V \) such that \(p(u) \neq 0 \neq q(v) \). Noticing that \(M \) is a subring of \(Q \), we have

\[
p(u)\Gamma M\Gamma q(v) \subset p(u)\Gamma Q\Gamma q(v) = 0
\]

and so \(p(u)\Gamma M\Gamma q(v) = 0 \). This is a contradiction. Hence \(p = 0 \) or \(q = 0 \), ending the proof.

Definition 3.4. The set

\[
C_\Gamma := \{ g \in Q \mid g\gamma f = f\gamma g \text{ for all } f \in Q \text{ and } \gamma \in \Gamma \}
\]

is called the **extended centroid** of a \(\Gamma \)-ring \(M \).

Let \(M \) be a prime \(\Gamma \)-ring and let \(C_\Gamma \) be the extended centroid of \(M \). Note that if \(a_i \) and \(b_i \) are non-zero elements of \(M \) such that \(\sum a_i\gamma_i x\beta_i b_i = 0 \) for all \(x \in M \) and \(\beta_i, \gamma_i \in \Gamma \), then the \(a_i \)'s (also \(b_i \)'s) are linearly dependent over \(C_\Gamma \). Moreover, if \(a\gamma x\beta b = b\gamma x\beta a \) for all \(x \in M \) and \(\beta, \gamma \in \Gamma \) where \(a(\neq 0), b \in M \) are fixed, then there exists \(\lambda \in C_\Gamma \) such that \(b = \lambda a a \) for \(a \in \Gamma \).

Lemma 3.5. Let \(M \) be a 2-torsion free prime \(\Gamma \)-ring, \(D(\cdot, \cdot) \) the symmetric bi-derivation of \(M \) and \(d \) the trace of \(D(\cdot, \cdot) \). If

\[
a\gamma d(x) = 0
\]

for all \(x \in M \) and \(\gamma \in \Gamma \) where \(a \) is a fixed element of \(M \), then \(a = 0 \) or \(D = 0 \).

Proof. Let \(x, y, z \in M \) and \(\beta, \gamma \in \Gamma \). Replacing \(x \) by \(x + y \) in (1), we get

\[
a\gamma D(x, y) = 0.
\]

If we substitute \(z\beta x \) for \(x \) in (2), then

\[
a\gamma z\beta D(x, y) = 0.
\]

Since \(M \) is a prime \(\Gamma \)-ring, it follows that \(a = 0 \) or \(D = 0 \).
LEMMA 3.6. Let \(M \) be a 2-torsion free prime \(\Gamma \)-ring, \(D_1(\cdot, \cdot) \) and \(D_2(\cdot, \cdot) \) the symmetric bi-derivations of \(M \) and \(d_1 \) and \(d_2 \) the traces of \(D_1(\cdot, \cdot) \) and \(D_2(\cdot, \cdot) \), respectively. If
\[
d_1(x)\gamma d_2(y) = d_2(x)\gamma d_1(y)
\]
for all \(x, y \in M \) and \(\gamma \in \Gamma \) and \(d_1 \neq 0 \), then there exists \(\lambda \in C_\Gamma \) such that \(d_2(x) = \lambda \alpha d_1(x) \) for \(\alpha \in \Gamma \), where \(C_\Gamma \) is the extended centroid of \(M \).

Proof. Let \(x, y, z \in M \) and \(\beta, \gamma \in \Gamma \). Substituting \(y + z \) for \(y \) in (4), we have
\[
d_1(x)\gamma D_2(y, z) = d_2(x)\gamma D_1(y, z).
\]
Replacing \(z \) by \(z\beta y \) in (5), we have
\[
d_1(x)\gamma z\beta d_2(y) = d_2(x)\gamma z\beta d_1(y).
\]
Now if we replace \(y \) by \(x \) in (6), then
\[
d_1(x)\gamma z\beta d_2(x) = d_2(x)\gamma z\beta d_1(x).
\]
If \(d_1(x) \neq 0 \) then \(d_2(x) = \lambda(x)\alpha d_1(x) \) for all \(\alpha \in \Gamma \) and for some \(\lambda(x) \in C_\Gamma \). Thus if \(d_1(x) \neq 0 \neq d_1(y) \), then it follows from (6) that
\[
(\lambda(y) - \lambda(x))\alpha d_1(x)\gamma z\beta d_1(y) = 0.
\]
Since \(M \) is a prime \(\Gamma \)-ring, by using Lemma 3.5 we conclude that \(\lambda(x) = \lambda(y) \). Hence we have proved that there exists \(\lambda \in C_\Gamma \) such that \(d_2(x) = \lambda \alpha d_1(x) \) for all \(\alpha \in \Gamma \) and \(x \in M \) with \(d_1(x) \neq 0 \). On the other hand, if \(d_1(x) = 0 \) then \(d_2(x) = 0 \) as well. Therefore \(d_2(x) = \lambda \alpha d_1(x) \) for all \(x \in M \) and \(\alpha \in \Gamma \).

THEOREM 3.7. Let \(M \) be a 2-torsion free prime \(\Gamma \)-ring, \(D_1(\cdot, \cdot), D_2(\cdot, \cdot), D_3(\cdot, \cdot) \) and \(D_4(\cdot, \cdot) \) the symmetric bi-derivations of \(M \) and \(d_1, d_2, d_3 \) and \(d_4 \) the traces of \(D_1(\cdot, \cdot), D_2(\cdot, \cdot), D_3(\cdot, \cdot) \) and \(D_4(\cdot, \cdot) \) respectively. If
\[
d_1(x)\gamma d_2(y) = d_3(x)\gamma d_4(y)
\]
for all \(x, y \in M \) and \(\gamma \in \Gamma \) and \(d_1 \neq 0 \neq d_4 \), then there exists \(\lambda \in C_\Gamma \) such that \(d_2(x) = \lambda \alpha d_4(x) \) and \(d_3(x) = \lambda \alpha d_1(x) \) for \(\alpha \in \Gamma \) where \(C_\Gamma \) is the extended centroid of \(M \).
Proof. Let \(x, y, z, w \in M \) and \(\alpha, \beta, \gamma \in \Gamma \). Replacing \(y \) by \(y + z \) in (9), we get

\[
(10) \quad d_1(x)\gamma D_2(y, z) = d_3(x)\gamma D_4(y, z).
\]

If we substitute \(z\beta x \) for \(z \) in (10), then

\[
(11) \quad d_1(x)\gamma z\beta d_2(y) = d_3(x)\gamma z\beta d_4(y).
\]

Substituting \(z\alpha d_4(w) \) for \(z \) in (11), we have

\[
(12) \quad d_1(x)\gamma z\alpha d_4(w)\beta d_2(y) = d_3(x)\gamma z\alpha d_4(w)\beta d_4(y).
\]

By (11), we know that \(d_1(x)\gamma z\alpha d_2(w) = d_3(x)\gamma z\alpha d_4(w) \) and so

\[
d_1(x)\gamma z\alpha (d_4(w)\beta d_2(y) - d_2(w)\beta d_4(y)) = 0
\]

which implies that \(d_4(w)\beta d_2(y) = d_2(w)\beta d_4(y) \) since \(d_1 \neq 0 \) and \(M \) is a prime \(\Gamma \)-ring. It follows from \(d_4 \neq 0 \) and Lemma 3.6 that \(d_2(y) = \lambda \alpha d_4(y) \) for some \(\lambda \in C_\Gamma \). Hence, by (11), we conclude that

\[
(\lambda \alpha d_1(x) - d_3(x))\gamma z\beta d_4(y) = 0,
\]

and so \(d_3(x) = \lambda \alpha d_1(x) \). This completes the proof. \(\square \)

References

M. A. Öztürk
Department of Mathematics
Faculty of Arts and Sciences
Cumhuriyet University
58140-Sivas, Turkey
E-mail: maozturk@bim.cumhuriyet.edu.tr

Y. B. Jun
Department of Mathematics Education
Gyeongsang National University
Chinju 660-701, Korea
E-mail: ybjun@nongae.gsnu.ac.kr