INTUITIONISTIC FUZZY SETS IN GAMMA-SEMIGROUPS

MUSTAFA UÇKUN, MEHMET ALİ ÖZTÜRK, AND YOUNG BAE JUN

Reprinted from the Bulletin of the Korean Mathematical Society
INTUITIONISTIC FUZZY SETS IN GAMMA-SEMIGROUPS

MUSTAFA UÇKUN, MEHMET ALİ ÖZTÜRK, AND YOUNG BAE JUN

Abstract. We consider the intuitionistic fuzzification of the concept of several Γ-ideals in a Γ-semigroup \(S \), and investigate some properties of such Γ-ideals.

1. Introduction

The notion of a fuzzy set in a set was introduced by L. A. Zadeh [10], and since then this concept has been applied to various algebraic structures. K. T. Atanassov [1] defined the notion of an intuitionistic fuzzy set, as a concept more general than a fuzzy set (see also [2]). Using fuzzy ideals, N. Kuroki [5] discussed characterizations of semigroups (see also [6]). K. H. Kim and Y. B. Jun [3] considered the intuitionistic fuzzification of the notion of several ideals in a semigroup, and investigated some properties of such ideals (see also [4]). M. K. Sen and N. K. Saha [9] defined the concept of a Γ-semigroup, and established a relation between regular Γ-semigroup and Γ-group (see also [7], [8]). In this paper, we introduce the notion of an intuitionistic fuzzy Γ-ideal of a Γ-semigroup, and we investigate some properties connected with intuitionistic fuzzy Γ-ideals in a Γ-semigroup.

2. Preliminaries

Let \(S = \{x, y, z, \ldots \} \) and \(\Gamma = \{\alpha, \beta, \gamma, \ldots \} \) be two non-empty sets. Then \(S \) is called a Γ-semigroup if it satisfies

\[
\begin{align*}
&\bullet x\gamma y \in S, \\
&\bullet (x\beta y)\gamma z = x\beta(y\gamma z)
\end{align*}
\]

for all \(x, y, z \in S \) and \(\beta, \gamma \in \Gamma \). A non-empty subset \(U \) of a Γ-semigroup \(S \) is said to be a Γ-subsemigroup of \(S \) if \(UTU \subseteq U \). A left (right) Γ-ideal of a Γ-semigroup \(S \) is a non-empty subset \(U \) of \(S \) such that \(STU \subseteq U \) (\(UTS \subseteq U \)). If \(U \) is both a left and a right Γ-ideal of a Γ-semigroup \(S \), then we say that \(U \) is a Γ-bi-ideal of \(S \).

Received November 1, 2006.

2000 Mathematics Subject Classification. 03E72, 03F55, 20M12, 20M99.

Key words and phrases. (regular, simple) Γ-semigroup, Γ-subsemigroup, (interior) Γ-ideal, Γ-bi-ideal, intuitionistic fuzzy Γ-subsemigroup, intuitionistic fuzzy (interior) Γ-ideal, intuitionistic fuzzy Γ-bi-ideal, intuitionistic fuzzy left simple Γ-semigroup.
a Γ-ideal of S. A Γ-subsemigroup U of a Γ-semigroup S is called an interior Γ-ideal of S if $S\cup U \subseteq U$. A Γ-bi-ideal of a Γ-semigroup S is a Γ-subsemigroup U of S such that $U\cup STU \subseteq U$. Let $L[x]$ denote the principal left Γ-ideal of a Γ-semigroup S generated by x in S, that is, $L[x] = \{x\} \cup Sx$. A Γ-semigroup S is said to be regular if, for each $x \in S$, there exist $s \in S$ and $\beta, \gamma \in \Gamma$ such that $x = x\beta s\gamma x$. A Γ-semigroup S is a left-zero (right-zero) if $x\gamma y = x$ ($x\gamma y = y$) for all $x, y \in S$ and $\gamma \in \Gamma$. A Γ-semigroup S is said to be left (right) simple if S has no proper left (right) Γ-ideals. If a Γ-semigroup S has no proper Γ-ideals, then we say that S is simple. An element e in a Γ-semigroup S is called an idempotent if $e\gamma e = e$ for some $\gamma \in \Gamma$. Let E_S denote the set of all idempotents in a Γ-semigroup S.

By a fuzzy set μ in a non-empty set X we mean a function $\mu : X \rightarrow [0, 1]$ and the complement of μ, denoted by $\bar{\mu}$, is the fuzzy set in X given by $\bar{\mu}(x) = 1 - \mu(x)$ for all $x \in X$. An intuitionistic fuzzy set (briefly IFS) A in a non-empty set X is an object having the form
$$A = \{ (x, \mu_A(x), \nu_A(x)) \mid x \in X \},$$
where the functions $\mu_A : X \rightarrow [0, 1]$ and $\nu_A : X \rightarrow [0, 1]$ define the degree of membership and the degree of non-membership of the element $x \in X$ to the set A, which is a subset of X, respectively, and
$$0 \leq \mu_A(x) + \nu_A(x) \leq 1$$
for all $x \in X$. An intuitionistic fuzzy set $A = \{ (x, \mu_A(x), \nu_A(x)) \mid x \in X \}$ in X can be identified to an ordered pair (μ_A, ν_A) in $I^X \times I^X$ where $I = [0, 1]$. For the sake of simplicity, we shall use the symbol $A = (\mu_A, \nu_A)$ for the IFS $A = \{ (x, \mu_A(x), \nu_A(x)) \mid x \in X \}$. Let χ_U denote the characteristic function of a non-empty subset U of a Γ-semigroup S.

3. Intuitionistic fuzzy Γ-ideals

In what follows, let S denote a Γ-semigroup unless otherwise specified.

Definition 3.1. For an IFS $A = (\mu_A, \nu_A)$ in S, consider the following axioms:

(ΓS_1) $\mu_A(x\gamma y) \geq \min\{\mu_A(x), \mu_A(y)\},$

(ΓS_2) $\nu_A(x\gamma y) \leq \max\{\nu_A(x), \nu_A(y)\}$

for all $x, y \in S$ and $\gamma \in \Gamma$. Then $A = (\mu_A, \nu_A)$ is called a first (resp. second) intuitionistic fuzzy Γ-subsemigroup (briefly IFTS_1 (resp. IFTS_2)) of S if it satisfies (ΓS_1) (resp. (ΓS_2)). Also, $A = (\mu_A, \nu_A)$ is said to be an intuitionistic fuzzy Γ-subsemigroup (briefly IFTS) of S if it is both a first and a second intuitionistic fuzzy Γ-subsemigroup.

Theorem 3.2. If U is a Γ-subsemigroup of S, then $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an IFTS of S.

Proof. Let \(x, y \in S \) and \(\gamma \in \Gamma \). From the hypothesis, \(x\gamma y \in U \) if \(x, y \in U \). In this case
\[
\chi_U(x\gamma y) = 1 \geq \min\{\chi_U(x), \chi_U(y)\}
\]
and
\[
\bar{\chi}_U(x\gamma y) = 1 - \chi_U(x\gamma y)
\leq 1 - \min\{\chi_U(x), \chi_U(y)\}
= \max\{1 - \chi_U(x), 1 - \chi_U(y)\}
= \max\{\bar{\chi}_U(x), \bar{\chi}_U(y)\}.
\]
If \(x \notin U \) or \(y \notin U \), then \(\chi_U(x) = 0 \) or \(\chi_U(y) = 0 \). Thus
\[
\chi_U(x\gamma y) \geq 0 = \min\{\chi_U(x), \chi_U(y)\}
\]
and
\[
\max\{\bar{\chi}_U(x), \bar{\chi}_U(y)\} = \max\{1 - \chi_U(x), 1 - \chi_U(y)\}
= 1 - \min\{\chi_U(x), \chi_U(y)\}
= 1 \geq \bar{\chi}_U(x\gamma y).
\]
This completes the proof. \(\square \)

Theorem 3.3. Let \(U \) be a non-empty subset of \(S \). If \(\bar{U} = (\chi_U, \bar{\chi}_U) \) is an IFTS\(_1\) or IFTS\(_2\) of \(S \), then \(U \) is a \(\Gamma \)-subsemigroup of \(S \).

Proof. Suppose that \(\bar{U} = (\chi_U, \bar{\chi}_U) \) is an IFTS\(_1\) of \(S \) and \(x \in UTU \). In this case, \(x = u\gamma v \) for some \(u, v \in U \) and \(\gamma \in \Gamma \). It follows from (\(\Gamma S_1 \)) that
\[
\chi_U(x) = \chi_U(u\gamma v) \geq \min\{\chi_U(u), \chi_U(v)\} = 1.
\]
Hence \(\chi_U(x) = 1 \), i.e. \(x \in U \). Thus \(U \) is a \(\Gamma \)-subsemigroup of \(S \).

Now, assume that \(\bar{U} = (\chi_U, \bar{\chi}_U) \) is an IFTS\(_2\) of \(S \) and \(x' \in UTU \). Then \(x' = u'\gamma' v' \) for some \(u', v' \in U \) and \(\gamma' \in \Gamma \). Using (\(\Gamma S_2 \)), we get that
\[
\bar{\chi}_U(x') = \bar{\chi}_U(u'\gamma' v')
\leq \max\{\bar{\chi}_U(u'), \bar{\chi}_U(v')\}
= \max\{1 - \chi_U(u'), 1 - \chi_U(v')\} = 0
\]
and so \(\bar{\chi}_U(x') = 1 - \chi_U(x') = 0 \). Therefore \(\chi_U(x') = 1 \), i.e. \(x' \in U \). This completes the proof. \(\square \)

Definition 3.4. For an IFS \(A = (\mu_A, \nu_A) \) in \(S \), consider the following axioms:
(\(\Gamma L\)) \(\mu_A(x\gamma y) \geq \mu_A(y) \),
(\(\Gamma L\)) \(\nu_A(x\gamma y) \leq \nu_A(y) \)
for all \(x, y \in S \) and \(\gamma \in \Gamma \). Then \(A = (\mu_A, \nu_A) \) is called a first (resp. second) intuitionistic fuzzy left \(\Gamma \)-ideal (briefly IFL\(_1\) (resp. IFL\(_2\) \(\Gamma \)ideal) of \(S \) if it satisfies (\(\Gamma L\)) (resp. (\(\Gamma L\))). Also, \(A = (\mu_A, \nu_A) \) is said to be an intuitionistic fuzzy left \(\Gamma \)-ideal (briefly IFL\(_1\)) of \(S \) if it is both a first and a second intuitionistic fuzzy left \(\Gamma \)-ideal.
Definition 3.5. For an IFS $A = (\mu_A, \nu_A)$ in S, consider the following axioms:

(RGI_1) \[\mu_A(x\gamma y) \geq \mu_A(x), \]

(RGI_2) \[\nu_A(x\gamma y) \leq \nu_A(x) \]

for all $x, y \in S$ and $\gamma \in \Gamma$. Then $A = (\mu_A, \nu_A)$ is called a first (resp. second) intuitionistic fuzzy right Γ-ideal of S if it satisfies (RGI_1) (resp. (RGI_2)). Also, $A = (\mu_A, \nu_A)$ is said to be an intuitionistic fuzzy right Γ-ideal of S if it is both a first and a second intuitionistic fuzzy right Γ-ideal.

Definition 3.6. Let $A = (\mu_A, \nu_A)$ be an IFS in S. Then $A = (\mu_A, \nu_A)$ is called an intuitionistic fuzzy Γ-ideal (briefly $IF\Gamma I$) of S if it is both an intuitionistic fuzzy left and an intuitionistic fuzzy right Γ-ideal.

Proposition 3.7. Let U be a left-zero Γ-subsemigroup of S. If $A = (\mu_A, \nu_A)$ is an $IF\Gamma I$ of S, then the restriction of A to U is constant, that is, $A(x) = A(y)$ for all $x, y \in U$.

Proof. Let $x, y \in U$. Since U is left-zero, $x\gamma y = x$ and $y\gamma x = y$ for all $\gamma \in \Gamma$. In this case, from the hypothesis, we have that

\[\mu_A(x) = \mu_A(x\gamma y) \geq \mu_A(y), \]
\[\mu_A(y) = \mu_A(y\gamma x) \geq \mu_A(x) \]

and

\[\nu_A(x) = \nu_A(x\gamma y) \leq \nu_A(y), \]
\[\nu_A(y) = \nu_A(y\gamma x) \leq \nu_A(x) \]

Thus we obtain $\mu_A(x) = \mu_A(y)$ and $\nu_A(x) = \nu_A(y)$ for all $x, y \in U$. Hence $A(x) = A(y)$ for all $x, y \in U$. \hfill \Box

Lemma 3.8. If U is a left Γ-ideal of S, then $\tilde{U} = (\chi_U, \tilde{\chi}_U)$ is an $IF\Gamma I$ of S.

Proof. Let $x, y \in S$ and $\gamma \in \Gamma$. Since U is a left Γ-ideal of S, $x\gamma y \in U$ if $y \in U$. It follows that

\[\chi_U(x\gamma y) = 1 = \chi_U(y) \]

and

\[\tilde{\chi}_U(x\gamma y) = 1 - \chi_U(x\gamma y) = 0 = 1 - \chi_U(y) = \tilde{\chi}_U(y). \]

If $y \notin U$, then $\chi_U(y) = 0$. In this case

\[\chi_U(x\gamma y) \geq 0 = \chi_U(y) \]

and

\[\tilde{\chi}_U(y) = 1 - \chi_U(y) = 1 \geq \tilde{\chi}_U(x\gamma y). \]

Consequently, $\tilde{U} = (\chi_U, \tilde{\chi}_U)$ is an $IF\Gamma I$ of S. \hfill \Box

Theorem 3.9. Let $A = (\mu_A, \nu_A)$ be an $IF\Gamma I$ of S. If E_S is a left-zero Γ-subsemigroup of S, then $A(e) = A(e')$ for all $e, e' \in E_S$.

Let for an \(\nu \) it is clear that every \(\mu \) if
\[
\mu_A(e) = \mu_A(e' \gamma e) \geq \mu_A(e'),
\]
and
\[
\nu_A(e) = \nu_A(e' \gamma e) \leq \nu_A(e'),
\]
Thus we have \(\mu_A(e) = \mu_A(e') \) and \(\nu_A(e) = \nu_A(e') \) for all \(e, e' \in E_S \). This completes the proof.

Theorem 3.10. Let \(S \) be regular. If, for every non-empty subset \(U \) of \(S \), \(\tilde{U} = (\chi_U, \tilde{\chi}_U) \) is an \(IFLI_I \) (or \(IFLT_I \)) of \(S \) and \(\tilde{U}(e) = \tilde{U}(e') \) for all \(e, e' \in E_S \), then \(E_S \) is a left-zero \(\Gamma \)-subsemigroup of \(S \).

Proof. Since \(S \) is regular, \(E_S \) is non-empty. Let \(e = e' \gamma e \) where \(\gamma, \gamma' \in \Gamma \). Because of \(S \) is regular, \(L[e] = ST e \). Since \(L[e] \) is a left \(\Gamma \)-ideal of \(S \), we obtain \(\tilde{L}[e] = (\chi_{L[e]}, \tilde{\chi}_{L[e]}) \) is an \(IFLI_I \) (or \(IFLT_I \)) of \(S \) by Lemma 3.8. In this case, from the hypothesis, we get that
\[
\chi_{L[e]}(e') = \chi_{L[e]}(e) = 1 \text{ (or } \tilde{\chi}_{L[e]}(e') = \tilde{\chi}_{L[e]}(e) = 0 \).
\]
Hence \(e' \in L[e] = ST e \). Thus
\[
e' = x \beta e = x \beta (e' \gamma e) = e' \gamma e
\]
for some \(x \in S \) and \(\beta \in \Gamma \). Consequently, \(E_S \) is a left-zero \(\Gamma \)-semigroup.

Definition 3.11. For an IFS \(A = (\mu_A, \nu_A) \) in \(S \), consider the following axioms:

- \((ITI_1) \) \(\mu_A(x \beta s \gamma y) \geq \mu_A(s) \),
- \((ITI_2) \) \(\nu_A(x \beta s \gamma y) \leq \nu_A(s) \)

for all \(s, x, y \in S \) and \(\beta, \gamma \in \Gamma \). Then \(A = (\mu_A, \nu_A) \) is called a first (resp. second) intuitionistic fuzzy interior \(\Gamma \)-ideal (briefly \(IFTI_I \) (resp. \(IFTI_I \))) of \(S \) if it is an \(IIFTI_I \) (resp. \(IFTS_I \)) satisfying \((ITI_1) \) (resp. \((ITI_2) \)). Also, \(A = (\mu_A, \nu_A) \) is said to be an intuitionistic fuzzy interior \(\Gamma \)-ideal (briefly \(IFTI_I \)) of \(S \) if it is both a first and a second intuitionistic fuzzy interior \(\Gamma \)-ideal.

Remark 3.12. It is clear that every \(IFTI_I \) of \(S \) is an \(IFTI_I \) of \(S \).

Theorem 3.13. If \(S \) is regular, then every \(IFTI_I \) of \(S \) is an \(IFTI_I \) of \(S \).

Proof. Let \(A = (\mu_A, \nu_A) \) be an \(IFTI_I \) of \(S \) and \(x, y \in S \). In this case, because of \(S \) is regular, there exist \(s, s' \in S \) and \(\beta, \beta', \gamma, \gamma' \in \Gamma \) such that \(x = x \beta s \gamma x \)
and $y = y' s' \gamma' y$. Thus

$$
\begin{align*}
\mu_A(x \alpha' y) &= \mu_A(x \alpha'(y' s' \gamma' y)) \\
&= \mu_A(x \alpha'y' \beta'(s' \gamma' y)) \\
&\geq \mu_A(y)
\end{align*}
$$

and

$$
\begin{align*}
\nu_A(x \alpha' y) &= \nu_A(x \alpha'(y' s' \gamma' y)) \\
&= \nu_A(x \alpha'y' \beta'(s' \gamma' y)) \\
&\leq \nu_A(y)
\end{align*}
$$

for all $\alpha' \in \Gamma$. It follows that $A = (\mu_A, \nu_A)$ is an $IF\Gamma I$ of S. Similarly, we can show that $A = (\mu_A, \nu_A)$ is an $IF\Gamma I$ of S. This completes the proof. \Box

Theorem 3.14. If U is an interior Γ-ideal of S, then $\tilde{U} = (\chi_U, \tilde{\chi}_U)$ is an $IF\Gamma I$ of S.

Proof. Since U is a Γ-subsemigroup of S, we have that $\tilde{U} = (\chi_U, \tilde{\chi}_U)$ is an $IF\Gamma S$ of S by Theorem 3.2. Let $s, x, y \in S$ and $\beta, \gamma \in \Gamma$. From the hypothesis, $x \beta s \gamma y \in U$ if $s \in U$. In this case

$$
\chi_U(x \beta s \gamma y) = 1 = \chi_U(s)
$$

and

$$
\tilde{\chi}_U(x \beta s \gamma y) = 1 - \chi_U(x \beta s \gamma y) = 0 = 1 - \chi_U(s) = \tilde{\chi}_U(s).
$$

If $s \notin U$, then $\chi_U(s) = 0$. Thus

$$
\chi_U(x \beta s \gamma y) \geq 0 = \chi_U(s)
$$

and

$$
\tilde{\chi}_U(s) = 1 - \chi_U(s) = 1 \geq \tilde{\chi}_U(x \beta s \gamma y).
$$

Consequently, $\tilde{U} = (\chi_U, \tilde{\chi}_U)$ is an $IF\Gamma I$ of S. \Box

Theorem 3.15. Let S be regular and U a non-empty subset of S. If $\tilde{U} = (\chi_U, \tilde{\chi}_U)$ is an $IF\Gamma I_1$ or $IF\Gamma I_2$ of S, then U is an interior Γ-ideal of S.

Proof. It is clear that U is a Γ-subsemigroup of S by Theorem 3.3. Suppose that $\tilde{U} = (\chi_U, \tilde{\chi}_U)$ is an $IF\Gamma I_1$ of S and $x \in STU S$. In this case, $x = s \beta u \gamma t$ for some $s, t \in S$, $u \in U$ and $\beta, \gamma \in \Gamma$. It follows from $(IF I_1)$ that

$$
\chi_U(x) = \chi_U(s \beta u \gamma t) \geq \chi_U(u) = 1.
$$

Hence $\chi_U(x) = 1$, i.e. $x \in U$. Thus U is an interior Γ-ideal of S.

Now, assume that $\tilde{U} = (\chi_U, \tilde{\chi}_U)$ is an $IF\Gamma I_2$ of S and $x' \in STU S$. Then $x' = s' \beta' u' \gamma' t'$ for some $s', t' \in S$, $u' \in U$ and $\beta', \gamma' \in \Gamma$. Using $(IF I_2)$, we obtain

$$
\tilde{\chi}_U(x') = \tilde{\chi}_U(s' \beta' u' \gamma' t') \leq \tilde{\chi}_U(u') = 1 - \chi_U(u') = 0
$$

and so $\tilde{\chi}_U(x') = 1 - \chi_U(x') = 0$. Therefore $\chi_U(x') = 1$, i.e. $x' \in U$. This completes the proof. \Box
Definition 3.16. S is called first (resp. second) intuitionistic fuzzy left simple if every IFL$_1$ (resp. IFL$_2$) of S is constant. Also, S is said to be intuitionistic fuzzy left simple if it is both first and second intuitionistic fuzzy left simple, i.e. every IFL$_1$ of S is constant.

Theorem 3.17. If S is left simple, then S is intuitionistic fuzzy left simple.

Proof. Let $A = (\mu_A, \nu_A)$ be an IFL$_1$ of S and $x, x' \in S$. In this case, because of S is left simple, there exist $s, s' \in S$ and $\gamma, \gamma' \in \Gamma$ such that $x = s\gamma x'$ and $x' = s'\gamma' x$. Thus, since $A = (\mu_A, \nu_A)$ is an IFL$_1$ of S, we get that

$$
\mu_A(x) = \mu_A(s\gamma x') \geq \mu_A(x'),
$$

$$
\mu_A(x') = \mu_A(s'\gamma' x) \geq \mu_A(x)
$$

and

$$
\nu_A(x) = \nu_A(s\gamma x') \leq \nu_A(x'),
$$

$$
\nu_A(x') = \nu_A(s'\gamma' x) \leq \nu_A(x).
$$

Hence we have $\mu_A(x) = \mu_A(x')$ and $\nu_A(x) = \nu_A(x')$ for all $x, x' \in S$, that is, $A(x) = A(x')$ for all $x, x' \in S$. Consequently, S is intuitionistic fuzzy left simple. \qed

Theorem 3.18. If S is first or second intuitionistic fuzzy left simple, then S is left simple.

Proof. Let U be a left Γ-ideal of S. Suppose that S is first (or second) intuitionistic fuzzy left simple. Because of $U = (\chi_U, \bar{\chi}_U)$ is an IFL$_1$ of S by Lemma 3.8, $\bar{U} = (\chi_U, \bar{\chi}_U)$ is an IFL$_1$ (and IFL$_2$) of S. From the hypothesis, χ_U (and $\bar{\chi}_U$) is constant. Since U is non-empty, it follows that $\chi_U = 1$ (or $\bar{\chi}_U = 0$), where 1 and 0 are fuzzy sets in S defined by $1(x) = 1$ and $0(x) = 0$ for all $x \in S$, respectively. Thus $x \in U$ for all $x \in S$. This completes the proof. \qed

Theorem 3.19. If S is simple, then every IFI$_1$ of S is constant.

Proof. Let $A = (\mu_A, \nu_A)$ be an IFI$_1$ of S and $x, x' \in S$. In this case, because of S is simple, there exist $s, s', t, t' \in S$ and $\beta, \beta', \gamma, \gamma' \in \Gamma$ such that $x = s\beta x'\gamma t$ and $x' = s'\beta' x'\gamma' t'$. Thus, since $A = (\mu_A, \nu_A)$ is an IFI$_1$ of S, we obtain that

$$
\mu_A(x) = \mu_A(s\beta x'\gamma t) \geq \mu_A(x'),
$$

$$
\mu_A(x') = \mu_A(s'\beta' x'\gamma' t') \geq \mu_A(x)
$$

and

$$
\nu_A(x) = \nu_A(s\beta x'\gamma t) \leq \nu_A(x'),
$$

$$
\nu_A(x') = \nu_A(s'\beta' x'\gamma' t') \leq \nu_A(x).
$$

Hence we get $\mu_A(x) = \mu_A(x')$ and $\nu_A(x) = \nu_A(x')$ for all $x, x' \in S$. Consequently, $A = (\mu_A, \nu_A)$ is constant. \qed
Definition 3.20. For an $IFTS$ $A = (\mu_A, \nu_A)$ in S, consider the following axioms:

ΓB_1 $\mu_A(x; \beta s \gamma y) \geq \min\{\mu_A(x), \mu_A(y)\}$,

ΓB_2 $\nu_A(x; \beta s \gamma y) \leq \max\{\nu_A(x), \nu_A(y)\}$

for all $s, x, y \in S$ and $\beta, \gamma \in \Gamma$. Then $A = (\mu_A, \nu_A)$ is called an intuitionistic fuzzy Γ-bi-ideal (briefly $IF\Gamma B$) of S if it satisfies (ΓB_1) and (ΓB_2).

Remark 3.21. It is clear that every $IF\Gamma I$ of S is an $IF\Gamma B$ of S.

Theorem 3.22. If S is left simple, then every $IF\Gamma B$ of S is an $IF\Gamma I$ of S.

Proof. Let $A = (\mu_A, \nu_A)$ be an $IF\Gamma B$ of S and $x, y \in S$. In this case, from the hypothesis, there exist $s \in S$ and $\gamma \in \Gamma$ such that $y = s \gamma x$. Thus, because of $A = (\mu_A, \nu_A)$ is an $IF\Gamma B$ of S, we have that

$\mu_A(x; \beta y) = \mu_A(x; \beta s \gamma x) \geq \min\{\mu_A(x), \mu_A(x)\} = \mu_A(x)$

and

$\nu_A(x; \beta y) = \nu_A(x; \beta s \gamma x) \leq \max\{\nu_A(x), \nu_A(x)\} = \nu_A(x)$

for all $\beta \in \Gamma$. It follows that $A = (\mu_A, \nu_A)$ is an $IF\Gamma I$ of S.

Proposition 3.23. If U is a Γ-bi-ideal of S, then $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an $IF\Gamma B$ of S.

Proof. Since U is a Γ-subsemigroup of S, we obtain that $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an $IFTS$ of S by Theorem 3.2. Let $s, x, y \in S$ and $\beta, \gamma \in \Gamma$. From the hypothesis, $x; \beta s \gamma y \in U$ if $x, y \in U$. In this case

$\chi_U(x; \beta s \gamma y) = 1 = \min\{\chi_U(x), \chi_U(y)\}$

and

$\bar{\chi}_U(x; \beta s \gamma y) = 1 - \chi_U(x; \beta s \gamma y) = 0 = \max\{\bar{\chi}_U(x), \bar{\chi}_U(y)\}$.

If $x \notin U$ or $y \notin U$, then $\chi_U(x) = 0$ or $\chi_U(y) = 0$. Thus

$\chi_U(x; \beta s \gamma y) \geq 0 = \min\{\chi_U(x), \chi_U(y)\}$

and

$\max\{\bar{\chi}_U(x), \bar{\chi}_U(y)\} = \max\{1 - \chi_U(x), 1 - \chi_U(y)\}$

$= 1 - \min\{\chi_U(x), \chi_U(y)\}$

$= 1 \geq \bar{\chi}_U(x; \beta s \gamma y)$.

Consequently, $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an $IF\Gamma B$ of S.

\hfill \Box
References

MUSTAFA ÜÇKÜN
DEPARTMENT OF MATHEMATICS
FACULTY OF ARTS AND SCIENCES
İNÖNÜ UNIVERSITY, 44069 MALATYA, TURKEY
E-mail address: muckun@inonu.edu.tr

MEHMET ALİ ÖZTÜRK
DEPARTMENT OF MATHEMATICS
FACULTY OF ARTS AND SCIENCES
Cumhuriyet University, 58140 Sivas, Turkey
E-mail address: maozturk@cumhuriyet.edu.tr

YOUNG BAE JUN
DEPARTMENT OF MATHEMATICS EDUCATION
Gyeongsang National University
Chinju 660-701, KOREA
E-mail address: ybjun@gsenu.ac.kr