Some Characterizations of Modules via Essentially Small Submodules

LE VAN THUYET
Department of Mathematics, Hue University, 3 Le Loi, Hue city, Vietnam
e-mail: lvthuyet@hueuni.edu.vn

PHAN HONG TIN*
Department of Mathematics, Hue University’s College of Education, 32 Le Loi, Hue city, Vietnam
e-mail: phtin@hueic.edu.vn

Abstract. In this paper, the structure of \(e \)-local modules and classes of modules via essentially small are investigated. We show that the following conditions are equivalent for a module \(M \):

1. Introduction

Throughout this paper, \(R \) will be an associative ring with identity and all modules are unitary \(R \)-module. We write \(M_{R} \) (resp., \(R_{M} \)) to indicate that \(M \) is a right (resp., left) \(R \)-module. All modules are right unital unless stated otherwise. If \(N \) is a submodule of \(M \), we denote by \(N \leq M \). Moreover, we write \(N \leq_{e} M \) and \(N \leq_{\oplus} M \) to indicate that \(N \) is an essential submodule, a direct summand and a small submodule of \(M \), respectively. If \(X \) is a subset of a right \(R \)-module \(M \), the
right annihilator of X in R is denoted by $r_R(X)$ or simply $r(X)$ if no confusion appears.

Recently, some authors have studied generalizations of semiperfect rings and perfect rings via projectivity of modules and small submodules of modules see [7, 11, 16, 18, 19]. Following [19], a submodule N of M is called δ-small in M (denote $N \ll_\delta M$) if $M = N + L$ and M/L singular then $L = M$. In [7], the author extends the definition of lifting and supplemented modules to what he calls δ-lifting and δ-supplemented. This extension is made by replacing in the definitions the concept of small submodule by the corresponding one of δ-small submodule. Most properties of lifting and supplemented modules are adapted to this new setting.

A submodule N of M is called e-small (essentially small) in M, denote $N \ll_e M$, if $M = N + L$ and $L \leq^e M$ then $L = M$ ([20]). In [12], the authors were introduced a class of all e-lifting modules. A module M is called e-lifting if for any $N \leq M$, there exists a decomposition $M = A \oplus B$ such that $A \leq N$ and $N \cap B \ll_e M$. Some homology properties of e-lifting modules class were obtained. It proved that $\text{Rad}_e(M)$ is a Noetherian (Artinian) module if only if M has ACC(reps. DCC) on e-small submodules.

In [19], the author denoted
\[
\delta(M) = \text{Rej}_M(\varnothing) = \bigcap \{N \leq M | M/N \in \varnothing\} = \sum \{N \leq M | N \ll_\delta M\}
\]
where \varnothing is the class of all singular simple modules. Similarly, there is the concept of modules via e-small submodules ([20]). Call \varnothing_0 the class of all essential maximal submodules of M.

\[
\text{Rad}_e(M) = \bigcap \{N \leq M | N \in \varnothing_0\} = \sum \{N \leq M | N \ll_e M\}.
\]

Note that $\text{Rad}(M) \leq \delta(M) \leq \text{Rad}_e(M)$. If $\delta(M) \ll_\delta M$ and $\delta(M)$ is a maximal submodule of M, M is called a δ-local module ([4]). In [15], the author studied δ-local modules and established some properties of finitely generated amply δ-supplemented modules. A necessary and sufficient condition is provided for a module to be δ-local module. In this paper, we continue studying class of e-supplemented modules and introduce the concept of e-local modules. A module M is called e-local if $\text{Rad}_e(M)$ is a maximal submodule of M and $\text{Rad}_e(M) \ll_e M$. We show that $M = N \oplus K$ is an e-local module if and only if either N is an e-local module and K is semisimple, or K is an e-local module and N is semisimple.

Recall that the singular submodule of a module M is the set
\[
Z(M) = \{m \in M | r(m) \leq^e R\}.
\]
In [6], the author introduced the notions of singular modules and nonsingular modules. A module M is called singular (resp., nonsingular) if $Z(M) = M$ (resp., $Z(M) = 0$). In [13], the author defined the notion of dual singular submodules, that is $\overline{Z}(M) = \bigcap \{\text{Ker} \ g | g: M \to N, N$ is a small module}. M is called cosingular (resp., noncosingular) module if $\overline{Z}(M) = 0$ (resp., $\overline{Z}(M) = M$). A generalization
of cosingular and noncosingular, which is \(\delta \)-cosingular and \(\delta \)-noncosingular (respectively) were introduced and studied in [10].

In [8], the authors introduce the notion of \(\mathcal{T} \)-noncosingular modules as the notion of dual \(\mathcal{K} \)-nonsingular modules and generalizations of noncosingular modules. It turns out that some results about \(\mathcal{K} \)-nonsingular modules hold for dual \(\mathcal{T} \)-noncosingular modules. The structure of finitely generated \(\mathcal{T} \)-noncosingular \(\mathbb{Z} \)-modules is described, and a necessary and sufficient condition is provided for a direct sum of \(\mathcal{T} \)-noncosingular modules to be \(\mathcal{T} \)-noncosingular. Rings for which all right modules are \(\mathcal{T} \)-noncosingular are shown to be precisely right V-rings. A module \(M \) is called \(\mathcal{T} \)-noncosingular relative to \(N \) if, for every nonzero homomorphism \(f : M \to N \), \(\text{Im} f \) is not small in \(N \). \(M \) is called \(\mathcal{T} \)-noncosingular if \(M \) is \(\mathcal{T} \)-noncosingular relative to \(M \).

In this paper, we introduce to a special case of \(\mathcal{T} \)-noncosingular modules which are \(\mathcal{T} \)-e-noncosingular modules. A module \(M \) is called \(\mathcal{T} \)-e-noncosingular relative to \(N \) if, for every nonzero homomorphism \(f : M \to N \), \(\text{Im} f \) is not e-small in \(N \). \(M \) is called \(\mathcal{T} \)-e-noncosingular if \(M \) is \(\mathcal{T} \)-e-noncosingular relative to \(M \). Some properties of this class of modules and the relation to other kinds of modules are shown in section 3. We show that every right \(R \)-module is \(\mathcal{T} \)-e-noncosingular if and only if every right \(R \)-module is e-noncosingular, if and only if for any right \(R \)-module \(M \), \(\text{Rad}_e(M) = 0 \). Furthermore, \(\mathcal{T} \)-e-noncosingular modules and e-lifting modules are dual Baer modules.

2. e-local Modules

Recall that a submodule \(N \) of \(M \) is said to be e-small in \(M \) (denoted by \(N \ll_e M \)), if \(N + L = M \) with \(L \leq_e M \) implies \(L = M \).

The following lemma is proved in [20]:

Lemma 2.1. Let \(M \) be a module. Then

1. If \(N \ll_e M \) and \(K \leq N \), then \(K \ll_e M \) and \(N/K \ll_e M/K \).

2. Let \(N \ll_e M \) and \(M = X + N \). Then \(M = X \oplus Y \) for some a semisimple submodule \(Y \) of \(M \).

3. Let \(N, K \leq M \). Then \(N + K \ll_e M \) if and only if \(N \ll_e M \) and \(K \ll_e M \).

4. If \(K \ll_e M \) and \(f : M \to N \) is a homomorphism, then \(f(K) \ll_e N \). In particular, if \(K \ll_e M \leq N \), then \(K \ll_e N \).

5. Let \(K_1 \leq M_1 \leq M, K_2 \leq M_2 \leq M \) and \(M = M_1 \oplus M_2 \). Then \(K_1 \oplus K_2 \) is e-small in \(M_1 \oplus M_2 \) if and only if \(K_1 \ll_e M_1 \) and \(K_2 \ll_e M_2 \).

Lemma 2.2. Let \(M \) be an \(R \)-module and \(x \in M \). The following conditions are equivalent:

1. \(x \in \text{Rad}_e(M) \);

2. \(xR \ll_e M \).
Proof. It is clear and omit the proof. \hfill \Box

Corollary 2.3. If $M = \bigoplus_{i \in I} M_i$, then $\operatorname{Rad}_e(M) = \bigoplus_{i \in I} \operatorname{Rad}_e(M_i)$.

Proof. It is clear $\bigoplus_{i \in I} \operatorname{Rad}_e(M_i) \leq \operatorname{Rad}_e(M)$. For every $j \in I$, call $\pi_j : M \to M_j$ the canonical projection. If $x \in \operatorname{Rad}_e(M)$, then $xR \ll_e M$. It follows that $\pi_j(xR) \ll_e M_j$ or $\pi_j(x) \in \operatorname{Rad}_e(M_j)$. This gives $x \in \bigoplus_{i \in I} \operatorname{Rad}_e(M_i)$. \hfill \Box

Lemma 2.4. Let M be a module. The following are equivalent:

1. $M \ll_e M$;
2. M is a semisimple module;
3. Any submodule of M is e-small in M.

Proof. (1) \Rightarrow (2). Let A and B be submodules of M with $A \oplus B \leq_e M$. As $M = M + (A \oplus B)$ and $M \ll_e M$, then $M = A \oplus B$. It follows that M is a semisimple module.

(2) \Rightarrow (1) and (2) \Leftrightarrow (3) are obvious. \hfill \Box

Recall that a module M is called local if the sum of all proper submodules of M is also a proper submodule of M. We call M an e-local module if $\operatorname{Rad}_e(M)$ is a maximal submodule of M and $\operatorname{Rad}_e(M) \ll_e M$.

Let N, L be submodules of M. L is called an e-supplement of N in M if $M = N + L$ and $N \cap L$ is e-small in L. A module M is called e-supplemented if every submodule of M has an e-supplement in M [12].

Lemma 2.5. Any e-local module is e-supplemented.

Proof. Let M be an e-local module and N be a proper submodule of M. Since $\operatorname{Rad}_e(M)$ is a maximal submodule of M, either $N \leq \operatorname{Rad}_e(M)$ or $\operatorname{Rad}_e(M) + N = M$. If $N \leq \operatorname{Rad}_e(M)$ then M is an e-supplement of N in M. Now suppose $N + \operatorname{Rad}_e(M) = M$. It follows that $N \oplus Y = M$ for some semisimple submodule Y of M. Clearly, Y is an e-supplement of N in M. Thus M is e-supplemented. \hfill \Box

Remark 2.6. The following statements hold

1. Every simple module is local.
2. Every semisimple module M is not e-local, since $\operatorname{Rad}_e(M) = M$.

We next give some characterizations of e-local modules with semisimple property. Furthermore, the relationship between of e-local modules and local modules are considered.

Proposition 2.7. Every local module is either simple or e-local.

Proof. Assume that L is a local module and not simple. It is well-known that $\operatorname{Rad}(L)$ is the unique maximal submodule of L, $\operatorname{Rad}(L) \ll L$ and $\operatorname{Rad}(L) \leq_e L$.

Suppose that $\text{Rad}_e(L) \neq \text{Rad}(L)$. Call $x \in \text{Rad}_e(L)$ and $x \not\in \text{Rad}(L)$. Then $xR \ll_e L$ by Lemma 2.2. Since $xR + \text{Rad}(L) = L$ and $\text{Rad}(L) \ll L$, then we have $xR = L$. Hence, $L \ll_e L$. By Lemma 2.4, L is semisimple. So, $\text{Rad}(L) = 0$. Let H be a proper submodule of M. Since $\text{Rad}(L)$ is an only maximal submodule of M, $H \leq \text{Rad}(L)$. Hence, $H = 0$. It follows that M is simple, a contradiction. Thus, $\text{Rad}_e(L) \leq \text{Rad}(L)$. On the other hand, since $\text{Rad}(L) \ll L$, we have $\text{Rad}(L) \leq \text{Rad}_e(L)$. Thus $\text{Rad}(L) = \text{Rad}_e(L)$ is a maximal submodule of L and e-small in L.

\begin{proposition}
The following conditions are equivalent for an e-local module M:

1. M is local;
2. M is an indecomposable module.

\end{proposition}

\begin{proof}
(1) \Rightarrow (2) is clear.

(2) \Rightarrow (1). Note that $\text{Rad}_e(M)$ is a maximal submodule of M. Let L be a proper submodule of M. Suppose that $L \not\subseteq \text{Rad}_e(M)$. Then $L + \text{Rad}_e(M) = M$. Since $\text{Rad}_e(M) \ll_e M$, there is a decomposition $M = L \oplus L'$ with L' semisimple. But M is indecomposable. Thus $L = M$ or $L = 0$. But $L \not\subseteq \text{Rad}_e(M)$ and so $L = M$, a contradiction. It follows that $L \leq \text{Rad}_e(M)$. Consequently, M is a local module.

\end{proof}

\begin{theorem}
Let $M = N \oplus K$ be a module. The following statements are equivalent:

1. M is e-local;
2. Either (a) N is e-local and K is semisimple, or (b) K is e-local and N is semisimple.

\end{theorem}

\begin{proof}
By Corollary 2.3, we have $\text{Rad}_e(M) = \text{Rad}_e(N) \oplus \text{Rad}_e(K)$.

(1) \Rightarrow (2). Since $\text{Rad}_e(M)$ is a maximal submodule of M, we have

$$\text{Rad}_e(N) = N \text{ or } \text{Rad}_e(K) = K.$$

Assume that $\text{Rad}_e(N) = N$. If X is a submodule of K with $\text{Rad}_e(K) \leq X$, then $\text{Rad}_e(M) \leq N \oplus X$. So $X = \text{Rad}_e(K)$ or $X = K$. Therefore $\text{Rad}_e(K)$ is a maximal submodule of K. Moreover, $\text{Rad}_e(K)$ is e-small in K and $N \ll_e N$. Thus K is e-local and N is semisimple by Lemma 2.4.

Similarly, if $\text{Rad}_e(K) = K$, then we also have N is e-local and K is semisimple.

(2) \Rightarrow (1). Assume that K is e-local and N is semisimple. Then $N \ll_e N$ and $\text{Rad}_e(N) = N$ by Lemma 2.4. So $\text{Rad}_e(M) = N \oplus \text{Rad}_e(K) \ll_e M$. Let $L \leq M$ be a submodule such that $\text{Rad}_e(M) \leq L$. It follows that $\text{Rad}_e(K) \leq K \cap L$. As $\text{Rad}_e(K)$ is a maximal submodule of K, we have $K \cap L = \text{Rad}_e(K)$ or $K \cap L = K$. Note that $L = N \oplus (K \cap L)$. This gives that $L = \text{Rad}_e(M)$ or $L = M$. Therefore $\text{Rad}_e(M)$ is a maximal submodule of M. Consequently, M is an e-local module.

\end{proof}
Corollary 2.10. A direct sum of two e-local modules is never e-local.

Proof. Let $M = L_1 \oplus L_2$ be a module with e-local modules L_1 and L_2. Suppose that M is e-local. By Theorem 2.9, one of the L_i ($i = 1, 2$) is semisimple. It follows that $\text{Rad}_e(L_1) = L_1$ or $\text{Rad}_e(L_2) = L_2$, a contradiction.

Example 2.11.

(1) Let M be a simple singular module. Then M is δ-local but it is not e-local. For example, $M = \mathbb{Z}/p\mathbb{Z}$, p is a prime number. Then M is a \mathbb{Z}-module simple and singular.

(2) Let N be an e-local projective module and K, a non-projective semisimple module. By Theorem 2.9 and [15, Proposition 2.17], $N \oplus K$ is an e-local module but it is not δ-local.

(3) Let $R = \mathbb{Z}, M = \mathbb{Z}/24\mathbb{Z}$. Then, $\text{Rad}(M) = \delta(M) = 6M, \text{Rad}_e(M) = 2M$. So, M is an e-local module but it is neither local nor δ-local.

(4) Let F be a field and $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$. Then R is δ-local but it is not local ([15, 2.5]). Moreover, R is an e-local module by projectivity of R.

Proposition 2.12. A module M is e-local if and only if $M = L \oplus N$ such that L is a cyclic e-local module and N is a semisimple module.

Proof. (\Rightarrow). Assume that M is an e-local module. Then $\text{Rad}_e(M)$ is a maximal submodule of M. Call $x \in M$ and $x \notin \text{Rad}_e(M)$. By maximality of $\text{Rad}_e(M)$, $M = \text{Rad}_e(M) + xR$. Furthermore, $\text{Rad}_e(M) \ll_e M$, there exists a nonzero semisimple submodule X of M such that $M = X \oplus xR$. It follows that $\text{Rad}_e(X) = X$ and so X is not e-local. We deduce that xR is e-local by Theorem 2.9.

(\Leftarrow). By Theorem 2.9.

Theorem 2.13. The following conditions are equivalent for a module M:

1. M is an e-local module;
2. $\text{Rad}_e(M)$ is a maximal submodule of M and every proper essential submodule of M is contained in a maximal submodule;
3. M has a unique essential maximal submodule and every proper essential submodule of M is contained in a maximal submodule.

Proof. (1) \iff (2) is clear.

1 \Rightarrow (3). Since M is e-local, M is not semisimple. Assume that there is a nonzero submodule $X \leq M$ such that $\text{Rad}_e(M) \cap X = 0$. Since $\text{Rad}_e(M)$ is a maximal submodule of M, $M = \text{Rad}_e(M) \oplus X$. This gives that X is a simple module. As $\text{Rad}_e(M) \ll_e M$, there exists a semisimple submodule $L \leq M$ such that $M = L \oplus X$. We deduce that M is a semisimple module, a contradiction. It follows that $\text{Rad}_e(M)$ is essential in M. Now suppose that M contains an essential
maximal submodule N such that $N \nsubseteq \text{Rad}_e(M)$. Then $M = \text{Rad}_e(M) + N$. Since $\text{Rad}_e(M) \ll_e M$, there exists a semisimple submodule E of M such that $M = E \oplus N$. But N is essential in M, we have $E = 0$ and so $N = M$, a contradiction. Consequently, $\text{Rad}_e(M)$ is the only essential maximal submodule of M.

(3) \Rightarrow (1). Assume that every proper essential submodule M is contained in a maximal submodule and K is the only essential maximal submodule of M. If $x \in M \setminus K$, then $M = xR + K$ by maximality of K. By our assumption $K \leq M$, xR is not e-small in M. This gives that $x \notin \text{Rad}_e(M)$. We deduce that $\text{Rad}_e(M) \leq K$. Let Y be a proper essential submodule M, then $Y \leq K$ and $Y + K = K \neq M$. It follows that $K \ll_e M$, i.e. $K \leq \text{Rad}_e(M)$. Thus $\text{Rad}_e(M) = K \ll_e M$. \hfill \square

Following [12], a module M is called e-supplemented if every submodule of M has an e-supplement in M. A module M is called amply e-supplemented if for any submodules A, B of M with $M = A + B$, there exists an e-supplement P of A such that $P \leq B$. In this case, we say that A has ample e-supplements in M.

Proposition 2.14. Let M be an e-local module. If N is a submodule of M, then N is either e-small in M or there exists a semisimple submodule X of M such that $M = N \oplus X$.

Proof. Let N be a submodule of M. Assume N is not e-small in M. Then $N \nsubseteq \text{Rad}_e(M)$. By maximality of $\text{Rad}_e(M)$, we have $N + \text{Rad}_e(M) = M$. As $\text{Rad}_e(M) \ll_e M$, $M = N \oplus X$ for some a semisimple submodule X of M. \hfill \square

Lemma 2.15. Let N be a maximal submodule of a module M. If K is an e-supplement of N in M, then K is either e-local or semisimple.

Proof. By assumption, we have $N + K = M$ and $N \cap K \ll_e K$. Therefore $N \cap K \leq \text{Rad}_e(K)$. As $M/N \simeq K/(N \cap K)$, $N \cap K$ is a maximal submodule of K. It follows that $\text{Rad}_e(K) = N \cap K$ or $\text{Rad}_e(K) = K$. If $\text{Rad}_e(K) = N \cap K$, then K is an e-local module. Assume that $\text{Rad}_e(K) = K$. For any $x \in K \setminus (N \cap K)$, we have $xR + (N \cap K) = K$. Furthermore, we have $xR \ll_e K$ by Lemma 2.2 and $N \cap K \ll_e K$. Thus $K \ll_e K$ by Lemma 2.1. By Lemma 2.4, K is a semisimple module. \hfill \square

Lemma 2.16. Let L_1, L_2, \ldots, L_n be submodules of M such that either L_i is e-local or L_i is semisimple. Assume that N is a submodule of M and $N + L_1 + \ldots + L_n$ has an e-supplement K in M. Then, there exists a subset I of $\{1, \ldots, n\}$ such that $K + \sum_{i \in I} X_i$ is an e-supplement of N in M, where $X_i = L_i$ or X_i is a semisimple direct summand of L_i.

Proof. If $n = 1$ then $N + (K + L_1) = M$ and $K \cap (N + L_1) \ll_e K$. Call $H = (N + K) \cap L_1$. Assume that $H \ll_e L_1$. We have

$$N \cap (K + L_1) \leq [(N + L_1) \cap K] + [(N + K) \cap L_1 \ll_e K + L_1].$$

It follows that $K + L_1$ is an e-supplement of N in M.

If \(H \not\leq_e L_1 \) then \(L_1 \) is not semisimple by Lemma 2.4. By hypothesis, \(L_1 \) is \(e \)-local. From Proposition 2.14, there exists a semisimple submodule \(X_1 \leq L_1 \) such that \(H \oplus X_1 = L_1 \). Hence \(N + (K + X_1) = M \). We have that
\[
N \cap (K + X_1) \leq (N + K) \cap X_1 + (N + X_1) \cap K,
\]
and obtain that \(N \cap (K + X_1) \leq_e K + X_1 \). This gives that \(K + X_1 \) is an \(e \)-supplement of \(N \) in \(M \).

Proposition 2.17. Let \(M \) be a finitely generated module. The following conditions are equivalent:

1. \(M \) is an amply \(e \)-supplemented module;
2. Every maximal submodule of \(M \) has ample \(e \)-supplement in \(M \);
3. If \(L, N \) are submodules of \(M \) and \(M = L + N \) then \(M = N + L_1 + \ldots + L_n \), where \(n \) is a positive integer number, either \(L_i \) is \(e \)-local or \(L_i \) is semisimple.

Proof. (1) \(\Rightarrow \) (2). It is clear.

(2) \(\Rightarrow \) (3). Let \(N, L \) be submodules of \(M \) and \(M = N + L \). Call \(\Gamma \) a class of all submodules \(X \) of \(M \) such that \(X \leq L \) and \(X = X_1 + \ldots + X_k \), where either \(X_i \) is \(e \)-local or \(X_i \) is semisimple. Assume that \(M \neq N + A \) for all \(A \in \Gamma \). By [15, Lemma 35], there exists a submodule \(U \leq M \) such that \(N \leq U \) and \(U \) is a maximal submodule of \(M \) satisfying \(M \neq U + A \) for all \(A \in \Gamma \). Since \(M \) is finitely generated and \(U \neq M \), there exists a maximal submodule \(K \leq M \) such that \(U \leq K \). So \(K + L = M \). By hypothesis, there exists a submodule \(E \leq L \) such that \(E \) is an \(e \)-supplement of \(K \) in \(M \). Following Lemma 2.15, either \(E \) is \(e \)-local or \(E \) is semisimple. It is easy to see that \(U \neq U + E \). Otherwise, we have \(E \leq U \leq K \) and \(K = K + E = M \). It follows \(M = U + E + F, F \in \Gamma \). So \(E + F \in \Gamma \), a contradiction.

(3) \(\Rightarrow \) (1). By Lemma 2.16.

Lemma 2.18. Let \(N, L \) be submodules of \(M \) such that \(M = N + L \). If \(L \) is an \(e \)-supplemented module then \(L \) contains an \(e \)-supplement of \(N \) in \(M \).

Proof. By hypothesis, there exists a submodule \(K \) of \(L \) such that \((N \cap L) + K = L \) and \((N \cap L) \cap K \leq_e K \). Then \(N + K = M \) and \(N \cap K \leq_e K \). So \(K \) is an \(e \)-supplement of \(N \) in \(M \).

Proposition 2.19. Let \(M \) be a module. If every cyclic submodule of \(M \) is \(e \)-supplemented then every maximal submodule of \(M \) has ample \(e \)-supplement.
Proof. Assume that N is a maximal submodule of M. Let L be a submodule of M such that $M = N + L$. There exists x in L satisfying $x \notin N$ and $xR + N = M$. Following Lemma 2.18, xR contain an e-supplement of N in M. \qed

Corollary 2.20. If M is a finitely generated module and every cyclic submodule of M is e-supplemented then M is an e-supplemented module.

Proof. By Proposition 2.17 and Proposition 2.19. \qed

3. T-e-noncosingular Modules

Let M, N be right R-modules. We call M T-e-noncosingular relative to N if $\text{Im} f$ is not e-small in N for any nonzero homomorphism $f : M \to N$. M is called T-e-noncosingular if M is T-e-noncosingular relative to M. The ring R is called right (left) T-e-noncosingular if the right (left) module R is T-e-noncosingular, respectively.

We denote $\nabla_e[M, N] = \{f : M \to N | \text{Im } f \ll_e N\}$. It is easily to check that M is T-e-noncosingular relative to N if and only if $\nabla_e[M, N] = \emptyset$.

Proposition 3.1. Let M, N be right R-modules and K is a direct summand of M. If $\nabla_e[M, N] = 0$ then $\nabla_e[K, N] = 0$.

Proof. Assume that $M = K \oplus L$ and $\varphi \in \nabla_e[K, N]$. Then $\text{Im } \varphi \ll_e N$. We consider the homomorphism $\varphi \oplus 0_L : M \to N$ defined by $(\varphi \oplus 0_L)(k + l) = \varphi(k)$ for all $k \in K, l \in L$. So $\text{Im}(\varphi \oplus 0_L) = \text{Im } \varphi \ll_e N$. As $\nabla_e[M, N] = 0$, $\varphi \oplus 0_K = 0$ and hence $\varphi = 0$. \qed

Proposition 3.2. Let M, N be right R-modules. If $\nabla_e[M, N] = 0$ then $\nabla_e[M, P] = 0$ for all submodule P of N.

Proof. Assume that $P \subseteq N$ and $\varphi \in \nabla_e[M, P]$. Then $\text{Im } \varphi \ll_e P$. It follows that $\text{Im } \varphi \ll_e N$. Since $\nabla_e[M, N] = 0$, $\varphi = 0$. \qed

Corollary 3.3. Every direct summand of a T-e-noncosingular module is also a T-e-noncosingular module.

Proof. It is followed from Proposition 3.1. \qed

Proposition 3.4. Let $M = \oplus_{i \in I} M_i$, $N = \oplus_{j \in J} N_j$ be right R-modules, where I, J are non-empty sets. Then $\nabla_e[M, N] = 0$ if only if $\nabla_e[M_i, N_j] = 0$ for all $i \in I, j \in J$.

Proof. Assume that $\nabla_e[M_i, N_j] = 0$ for all $i \in I, j \in J$. Let $f \in \nabla_e[M, N]$ and the conclusion $f_i : M_i \to M$. Since $\text{Im } f \ll_e N_j$, $\text{Im } f_i \ll_e N_j$ for all $i \in I$. Hence $f_i = 0$ for all $i \in I$. It follows that $f = 0$. Now, let $\varphi \in \nabla_e[M, N]$ and the projection $\pi_j : N \to N_j$. Set $\varphi_j = \pi_j \varphi : M \to N_j$. Since $\text{Im } \varphi \ll_e N$, $\text{Im } \varphi_j \ll_e N_j$ for all $i \in I$. By hypothesis, $\varphi_j = 0$. It follows that $\varphi = 0$. \qed
Corollary 3.5. Let $M = \oplus_{i \in I} M_i$, $N = \oplus_{j \in J} N_j$ be right R-modules, where I, J are non-empty sets. Then M is T-e-noncosingular relative to N if only if M_i is T-e-noncosingular relative to N_j for all $i \in I, j \in J$.

Corollary 3.6. Let $(M_i)_{i \in I}$ be a family of modules. Then $M = \oplus_{i \in I} M_i$ is a T-e-noncosingular if and only if M_i is T-e-noncosingular relative to M_j for all $i, j \in I$.

Let M be a module. We call M an e-small module if M is e-small in injective envelope of M. We denote $Z_e(M) = \bigcap \{ \ker g : M \to N, N$ is e-small module $\}$.

If $Z_e(M) = M$, then M is called an e-noncosingular module.

Proposition 3.7. The following conditions are equivalent for a ring R:

1. Every right R-module is T-e-noncosingular;
2. Every right R-module is e-noncosingular;
3. For any right R-module M, $\text{Rad}_e(M) = 0$.

Proof. (1) \Rightarrow (2). Let $N \ll_e E(N)$. We will prove $N = 0$. We consider the homomorphism $f : M \oplus N \to E(N)$ given by $f(m + n) = n$ for all $m \in M, n \in N$. Then $\text{Im } f = N \ll_e E(N)$. We have that $M \oplus N \oplus E(N)$ is an T-e-noncosingular module and obtain that $M \oplus N$ is T-e-noncosingular relative to $E(N)$. This gives $f = 0$. It is easily to check that $N = 0$. Furthermore, for any R-module M, $Z_e(M) = \bigcap \{ \ker g : M \to 0 \} = M$, i.e., M is e-noncosingular.

(2) \Rightarrow (3). Assume that N is an e-small submodule of M. Call $\pi : M \oplus N \to N$ the projection. By hypothesis, $M \oplus N$ is e-noncosingular. We have that $Z_e(M \oplus N) = M \oplus N$ and obtain that $f = 0$. Thus $N = 0$.

(3) \Rightarrow (1). It is clear. \qed

Now, we denote:

$Z_{e-M}(N) = \bigcap_{\varphi \in \nabla_e[M,N]} \ker \varphi$

Proposition 3.8. Let M be a module. Then the following conditions hold:

1. $Z_e(M) \leq Z_{e-M}(N)$.
2. $Z_{e-M}(N)$ is a fully invariant submodule of M.
3. $\nabla_e[M,N] = 0$ if only if $M = Z_{e-M}(N)$.
4. If $M = \oplus_{i \in I} M_i$ then $Z_{e-M}(N) \leq \oplus_{i \in I} Z_{e-M_i}(N)$.
Proof. (1) By definition, we get
\[\mathcal{Z}_e(M) \leq \bigcap \{ \text{Ker} g : M \to N | N = \text{Im } f, f \in \nabla_e[M, N] \} = \mathcal{Z}_{e-M}(N). \]

(2) Assume \(f \in \text{End}(M) \) and \(\varphi \in \text{Hom}(M, N) \) such that \(\text{Im } \varphi \leq_e N \). Therefore \(\text{Im } \varphi f \leq \text{Im } \varphi \). So \(\text{Im } \varphi f \leq_e N \). For all \(x \in \mathcal{Z}_{e-M}(N) \), \(\varphi(x) = 0 \) implies \(\varphi f(x) = 0 \). Thus \(f(x) \in \mathcal{Z}_{e-M}(N) \), i.e., \(\mathcal{Z}_{e-M}(N) \) is fully invariant.

(3) It is clear.

(4) As \(\mathcal{Z}_{e-M}(N) \) is fully invariant, \(\mathcal{Z}_{e-M}(N) = \oplus_{i \in I}(\mathcal{Z}_{e-M}(N) \cap M_i). \) We will prove that \(\mathcal{Z}_{e-M}(N) \cap M_i \subset \mathcal{Z}_{e-M}(N) \). Let \(x_i \in \mathcal{Z}_{e-M}(N) \cap M_i \) and \(\varphi_i : M_i \to N \) such that \(\text{Im } \varphi_i \leq_e N \). Then \(\psi_i : M \to M \) extends \(\varphi_i \) (\(\psi_i |_{M_j} = 0 \) for all \(j \neq i \)). This gives \(\text{Im } \psi_i \leq_e N \). Thus \(\psi_i(x_i) = 0 \) and hence \(x_i \in \mathcal{Z}_{e-M}(N) \).

Corollary 3.9. Let \(M \) and \(N \) be modules. Then \(M \) is \(\mathcal{T}-e \)-noncosingular relative to \(N \) if and only if \(\mathcal{Z}_{e-M}(N) = M \).

Remark 3.10. It is clearly to see that \(\mathcal{Z}_{e-M}(M) \leq \mathcal{Z}_{\mathcal{T}}(M) \leq \bigcap \{ \text{Ker} \varphi | \varphi \in \text{End}(M), \text{Im } \varphi \leq M \}. \) So, if \(M \) is a \(\mathcal{T}-e \)-noncosingular then \(M \) is a \(\mathcal{T} \)-noncosingular module. The converse is not true in general.

Example 3.11.

(1) \(\mathbb{Z} \)-module \(\mathbb{Z} \) is \(\mathcal{T}-e \)-noncosingular.

(2) If \(M_\mathbb{Z} = \mathbb{Z}_6 \) then \(\text{Rad}(M) = 0 \) and \(\mathcal{Z}_{e-M}(M) = 0 \). It follows that \(M \) is \(\mathcal{T} \)-noncosingular but not \(\mathcal{T}-e \)-noncosingular.

(3) Let \(R \) be a proper Dedekind domain and \(P \) be a nonzero prime ideal of \(R \). Consider module \(M = R(P^\infty) \oplus R/P \). Then \(M \) is not a \(\mathcal{T} \)-noncosingular module (see Example 2.12, [9]). So \(M \) is not a \(\mathcal{T}-e \)-noncosingular module.

(4) As \(\text{Hom}_\mathbb{Z}(\mathbb{Q}, \mathbb{Z}_2) = \text{Hom}_\mathbb{Z}(\mathbb{Z}_2, \mathbb{Q}) = 0 \), \(\mathbb{Q}_\mathbb{Z} \) is \(\mathcal{T}-e \)-noncosingular relative to \(\mathbb{Z}_2 \) and \(\mathbb{Z}_2 \) is \(\mathcal{T}-e \)-noncosingular relative to \(\mathbb{Q} \). Hence \((\mathbb{Q} \oplus \mathbb{Z}_2)_\mathbb{Z} \) is \(\mathcal{T}-e \)-noncosingular by Lemma 3.6.

Proposition 3.12. Let \(M \) be an \(R \)-module which \(S = \text{End}(M) \) is Von Neumann regular and \(T(M) = \{ N \leq M | \text{Rad}_e(N) = N \} \). If \(T(M) = 0 \) then \(M \) is \(\mathcal{T}-e \)-noncosingular.

Proof. Let \(f \in \text{End}(M) \) such that \(\text{Im } f \leq_e M \). Then \(\text{Im } f \leq \text{Rad}_e(M) \). Since \(S \) is regular, there exists \(g \in S \) such that \(f = fgf \). Hence \(fg \) is an idempotent and \(M = \text{Im } fg \oplus \text{Ker } fg \). Since \(\text{Im } fg \leq \text{Im } f \leq \text{Rad}_e(M) \), \(\text{Rad}_e(M) = \text{Rad}_e(\text{Im } fg) \oplus \text{Rad}_e(\text{Ker } fg) \). So, \(\text{Im } fg \cap \text{Rad}_e(M) = \text{Im } fg = \text{Rad}_e(\text{Im } fg) \oplus (\text{Im } fg \cap \text{Rad}_e(\text{Ker } fg)) \). It follows \(\text{Im } fg = \text{Rad}_e(\text{Im } fg) \). Therefore \(\text{Im } fg \in T(M) \). We have \(fg = 0 \) and \(f = 0 \). \(\square \)
3.11. Then M is not a T-noncosingular module. But the converse is not true in general. For example, let \mathbb{Z}-module $M = \mathbb{Q} \oplus \mathbb{Z}_2$ in Example 3.11. Then M is T-noncosingular. However, we have

$$\text{Rad}_e(\mathbb{Q} \oplus \mathbb{Z}_2) = \text{Rad}_e(\mathbb{Q}) \oplus \text{Rad}_e(\mathbb{Z}_2) = 0 \oplus \mathbb{Z}_2 \neq 0.$$

Proposition 3.13. Let $M = xR$ be a cyclic module such that $r(x)$ is an ideal of R. Then M is T-noncosingular if and only if $\text{Rad}_e(M) = 0$.

Proof. Assume that M is T-noncosingular and $\text{Rad}_e(M) \neq 0$. There exists $a \in R$ such that $xa \neq 0$ and $xa \in \text{Rad}_e(M)$. Call f an endomorphism of M with $f(xr) = xar$ for all $r \in R$. We have $\text{Im} f \leq \text{Rad}_e(M)$ and $f \neq 0$. But $\text{Rad}_e(M) \ll_e M$, a contradiction. The converse is clear. \qed

Corollary 3.14. A ring R is right T-noncosingular if and only if $\text{Rad}_e(R_R) = 0$.

Example 3.15.

1. Consider \mathbb{Z}_6 as a ring. We have $J(\mathbb{Z}_6) = 0$, $\text{Rad}_e(\mathbb{Z}_6) = \mathbb{Z}_6$. So \mathbb{Z}_6 is T-noncosingular.

2. Let R be a discrete valuation ring with maximal ideal m. Then R is not T-noncosingular following Example 4.7,[14]. So R is not T-noncosingular.

For $N \leq M, I \leq S = \text{End}(M)$, denote $N \leq M$ means that N is a fully invariant submodule of M and $E_M(I) = \sum_{\phi \in I} \text{Im} \phi; D_S(N) = \{ \phi \mid \text{Im} \phi \leq N \}$.

Lemma 3.16. Let $N \leq M, I \leq S, P \leq M, L \leq S$. Then:

1. $E_M(D_S(E_M(I))) = E_M(I)$;
2. $D_S(E_M(D_S(N))) = D_S(N)$;
3. $E_M(L) \leq M$;
4. $D_S(P) \leq S$.

Proof.

1. $E_M(D_S(E_M(I))) = \sum_{\phi \in D_S(E_M(I))} \text{Im} \phi \leq E_M(I)$. Conversely, for all $\varphi \in I, \text{Im} \varphi \leq E_I(M)$. So $\varphi \in D_S(E_M(I)) = \{ \phi \mid \text{Im} \phi \leq E_M(I) \}$.

2. $E_M(D_S(N)) \leq N$ implies $D_S(E_M(D_S(N))) \leq D_S(N)$. Conversely, for all $\varphi, \text{Im} \varphi \leq N, \text{Im} \varphi \leq \sum_{\text{Im} \varphi \leq N} \text{Im} \phi = E_M(D_S(N))$. So $D_S(N) \leq D_S(E_M(D_S(N)))$.

3. Let $f : M \to M, f(E_M(L)) = \sum_{\phi \in L} f(\text{Im} \phi) = \sum_{\phi \in L} \text{Im} \phi f$. Since $L \leq S, \phi f \in L$.

So $\sum_{\phi \in L} \text{Im} \phi f \leq \sum_{\psi \in L} \text{Im} \psi = E_M(L)$.

4. For all $\psi \in S, \phi \in D_S(P)$. We have $\psi \phi(M) \leq \psi(P) \leq P$ and $\phi \psi(M) \leq \phi(M) \leq P$. So $\psi \phi \in D_S(P)$ and $\phi \psi \in D_S(P)$. \qed
Proposition 3.17. Let M be an R-module. M is \mathcal{T}-e-nonsingular if and only if for all $I \leq S, E_M(I) = eM \oplus L$, in which $L \ll_e M, e^2 = e \in S$ implies $I \cap (1-e)S = 0$.

Proof. (\Rightarrow). Assume $I \leq S, E_M(I) = eM \oplus L$, in which $L \ll_e M, e^2 = e \in S$. We have $E_M(I \cap (1-e)S) \leq E_M(I) \cap E_M((1-e)S) \leq E_M(I) \cap (1-e)M = (eM \oplus L) \cap (1-e)M \leq (1-e)L$. Since $L \ll_e M, (1-e)L \ll_e M$. Hence $E_M(I \cap (1-e)S) \ll_e M$. M is \mathcal{T}-e-nonsingular, so $I \cap (1-e)S = 0$.

(\Leftarrow). Let $\phi \in S, \text{Im} \phi \ll_e M$. We have $E_M(\phi S) = \sum_{\psi \in S} \text{Im} \psi = \phi \sum_{\psi \in S} \text{Im} \psi = \phi(M) \ll_e M$. By hypothesis, $I \cap S = 0$. Hence $I = 0$, i.e., $\phi = 0$. \hfill \square

Corollary 3.18. M is a \mathcal{T}-e-nonsingular module if and only if for all $I \leq S, E_M(I) \ll_e M$ implies that $I = 0$.

Now, we call M an $e-\mathcal{K}$-module if for all $N \leq M, D_S(N) = 0$ implies $N \ll_e M$.

Proposition 3.19. M is an $e-\mathcal{K}$-module if and only if, for all $N \leq M, E_M(D_S(N))$ is a direct summand of M implies that $N = E_M(D_S(N)) \oplus L$ with $L \ll_e M$.

Proof. Assume that $N \leq M$ and $E_M(D_S(N)) \leq^\oplus M$. Then $E_M(D_S(N)) = eM, e^2 = e \in S$. Clearly, $eM = E_M(D_S(N)) \leq N$. On the other hand, $D_S(eM) \cap D_S((1-e)M \cap N) = 0$ and $D_S((1-e)M \cap N) \leq D_S(N) = D_S(eM)$. Hence $D_S((1-e)M \cap N) = 0$. Since M is an $e-\mathcal{K}$-module, we have $(1-e)M \cap N \ll_e M$. Thus $N = E_M(D_S(N)) \oplus ((1-e)M \cap N)$ and $(1-e)M \cap N \ll_e M$.

Conversely, assume $N \leq M$ and $D_S(N) = 0$. Then $E_M(D_S(N)) = 0$. By hypothesis, $N = E_M(D_S(N)) \oplus L$ with $L \ll_e M$. Thus $N = L \ll_e M$. \hfill \square

Recalled that a module M is e-lifting if for all submodule N of M, there exists decompsiton $M = A \oplus B$ such that $A \leq N$ and $N \cap B \ll_e B$ ([12]). A module M is called dual Baer if for all $N \leq M$, there exists an idempotent $e \in S = \text{End}(M)$ such that $D_S(N) = eS([8])$.

Lemma 3.20. A dual Baer $e-\mathcal{K}$-module is e-lifting.

Proof. Assume M is a dual Baer and $e-\mathcal{K}$-module. Let N be a submodule of M. There exists an idempotent $e \in S = \text{End}(M)$ such that $D_S(N) = eS$. We have $eM = E_M(eS) \leq N$. Hence $N = eM \oplus ((1-e)M \cap N)$. For all $\phi \in D_S((1-e)M \cap N)$, $\text{Im} \phi \leq N$. It follows $\phi \in D_S(N) = eS$. Since $\phi(M) \leq (1-e)M \cap eM = 0$, then $\phi = 0$, i.e., $D_S((1-e)M \cap N) = 0$. Since M is an $e-\mathcal{K}$-module, $(1-e)M \cap N \ll_e M$. Thus M is e-lifting. \hfill \square

Theorem 3.21. A \mathcal{T}-e-nonsingular e-lifting module is dual Baer.

Proof. Assume that M is a \mathcal{T}-e-nonsingular e-lifting module and $N \leq M$. Then $N = eM \oplus B$ which $e^2 = E \in S, B = (1-e)M \cap N \ll_e M$. Hence $eS \leq D_S(eM) \leq D_S(N)$. If there exists $\phi \in D_S(N) \setminus eS$, then $(1-e)\phi = eS \cap D_S(N)$. We obtain that $(1-e)\phi M \leq N$ and $(1-e)\phi M \leq (1-e)M$. So $(1-e)\phi M \leq N \cap (1-e)M = B \ll_e M$.
Since \(M \) is \(\mathcal{T}\)-noncosingular, which follows \((1 - e)\phi = 0\), i.e., \(\phi = e\phi \in eS \). This is a contradiction. Thus \(D_S(N) = eS \), i.e., \(M \) is dual Baer.

Lemma 3.22. Let \(M \) be a \(\mathcal{T}\)-noncosingular module and \(X \), a fully invariant submodule of \(M \) and \(X = N \oplus B \) with \(B \ll e M \). If \(N \) is a direct summand of \(M \) then \(N \) is a fully invariant submodule of \(M \).

Proof. Assume \(M = N \oplus P \) and \(\phi \in \text{End}(M) \). Set \(\psi = \pi_P\phi|_N \pi_N \). If there exists \(x \in N \) such that \(\phi(x) \notin N \), then \(\psi(x)
eq 0 \). Since \(X \) is a fully invariant submodule of \(M \), \(\phi(N) \leq \phi(X) \leq X \). So

\[
\phi(M) = \pi_P\phi|_N \pi_N(M) = \pi_P\phi|_N(N) \leq \pi_P(X) = X \cap P.
\]

Then \(X \cap P \cong B \). It follows \(X \cap P \ll e M \). As \(M \) is \(\mathcal{T}\)-noncosingular, \(\psi = 0 \), a contradiction. Thus \(\phi(N) \leq N \). \(\square \)

Proposition 3.23. Let \(M \) be a \(\mathcal{T}\)-noncosingular module. The following conditions are equivalent:

1. For every fully invariant submodule \(N \) of \(M \), there exists a direct summand \(B \) of \(M \) such that \(N/B \ll e M/B \);
2. For every fully invariant submodule \(N \) of \(M \), there exists a fully invariant direct summand \(B \) of \(M \) such that \(N/B \ll e M/B \).

Proof. (2) \(\Rightarrow \) (1) is clear. It suffices to prove (1) \(\Rightarrow \) (2). Assume \(X \leq M \). By (1), we have \(X = N \oplus B \), \(B \ll e M \) and \(N \) is a direct summand of \(M \). By Lemma 3.22, \(N \) is a fully invariant submodule of \(M \). Thus (2) holds. \(\square \)

Acknowledgments. The authors would like to thank the referee for the very helpful comments and suggestions.

References

