Ultrasonic Relaxation Study of the Interaction of β-Cyclodextrin with Benzoic Acid in an Aqueous Solution

Shin Park
Division of Life and Environment, Daegu University, Gyungsan 38453, Korea

Jong-Rim Bae*
Department of Physics, Daegu University, Gyungsan 38453, Korea

(Received 15 December 2017 : revised 13 January 2018 : accepted 5 March 2018)

Benzoic acid is an antifungal agent. In this study, we studied the interaction of β-cyclodextrin (β-CD) and non-ionized benzoic acid in an aqueous solution by using ultrasonic relaxation in the frequency range of 0.2 - 45 MHz. The interaction of β-CD with non-ionized benzoic acid showed the typical spectrum of a single relaxation process at frequencies below 1 MHz. We determined the backward rate constant (k_b), the equilibrium constant (K), and the standard volume change (ΔV) of the reaction as $k_b = 1.81 \times 10^6$ s$^{-1}$, $K = 137$ M$^{-1}$, and $\Delta V = 15.9 \times 10^{-6}$ m3 mol, respectively.

The backward rate constant and the thermodynamic constants were compared with those for the interaction of aspirin and 2-methoxy benzoic acid.

PACS numbers: 43.35.Fj, 43.35.Vz, 43.35.Wa

Keywords: β-CD, Benzoic acid, Inclusion complex, Ultrasonic relaxation, Rate constant, Standard volume change, Hydrophobicity

I. INTRODUCTION

Cyclodextrins (CDs) play important roles in biology, medicine, and pharmaceutical applications [1, 2]. CDs consist of glucopyranose units linked by an α-(1→4) glucosidic bond forming a cyclic compound with hydrophilic outer surface and hydrophobic inner cavity [1]. Tyree types of CDs exist with 6, 7, and 8 glucopyranose units, referred to as α-, β-, and γ-CDs, respectively [1]. CDs are soluble in water and form inclusion complex with many guest molecules. Kinetic studies of β-CD and guest molecules provide valuable information understanding molecule-to-molecule interactions.

Benzoic acid is an antifungal agent in medicine, commonly used as a component of Whitfield’s ointment [3]. Elucidating the interaction of CDs and drug molecules is important for the application of CDs in drug-delivery systems. Comparison of the kinetic and thermodynamic results obtained from β-CD and non-ionized aspirin [4] raised the need for clarification of the dynamics of the complex stabilization and how the rate constants of the formation and disruption of the complex are affected as a function of the guest molecules. The inclusion of aspirin, a benzoic acid derivative, into the β-CD cavity was previously reported using ultrasonic relaxation (0.8 - 7.5 MHz) [4], but the interactions occurring below 0.8 MHz is largely unknown.

Here, we studied the interaction of β-CD with non-ionized benzoic acid in an aqueous solution using ultrasonic relaxation. We used ultrasonic frequency range of 0.2 - 45 MHz and particularly focused on the low-frequency range below 1 MHz. The results were compared with the complex stabilization of β-CD with non-ionized aspirin [4] or ionized 2-methoxy benzoic acid [5].

II. EXPERIMENTAL METHODS

Benzoic acid and β-CD were acquired from Sigma (USA). Non-ionized benzoic acid solution (pH 1.7) was

*E-mail: jongrim@daegu.ac.kr
freshly prepared in each experiment. Solution densities were measured using a vibrating density meter (Anton Paar DMA 5000M). We used a high-Q ultrasonic resonance apparatus equipped for a lower frequency range at 25 °C. Three ultrasonic absorption methods were used in the frequency range of 0.2 - 45 MHz: a plano-concave resonance method (0.2 - 1.7 MHz), a plano-plano resonance method (2.4 - 8.1 MHz) and optical beam deflection method (15 - 45 MHz). A pulse-echo method was used to measured velocity at 3 MHz. Briefly, standing waves were generated in a cylindrical cavity (56 mm diameter and 50 cm³ volume) that consists of a 2-MHz fundamental X-cut quartz transducer and a concave reflector. A resonance spectrum was obtained with an optical heterodyne detection system using the Raman-Nath light diffraction method. The absorption coefficient of the sample liquid was obtained from the half-bandwidth of each resonance curve. Reliable absorption measurements below 1 MHz were attained from the high-quality factor attained from the resonator cell. Frequency above 300 kHz was insignificant and the loss below 300 kHz was calibrated using deionized H₂O. To measure the frequency range of 2.4 - 8.1 MHz, a plano-plano resonator cell (2-MHz fundamental frequency X-cut quartz crystals with 2-cm diameter) was used.

III. RESULTS AND DISCUSSION

The following formula describes the inclusion complex formation of non-ionized benzoic acid (guest) with β-CD:

Guest + β-CD \rightleftharpoons \frac{k_f}{k_b} \text{Guest} \cdot \beta - CD

where \(k_f\) and \(k_b\) are the forward rate constant and backward rate constant, respectively. When the ultrasonic relaxations of β-CD and non-ionized benzoic acid was measured at low frequencies below 1 MHz, β-CD showed ultrasonic relaxation at concentrations above 13 mM, whereas non-ionized benzoic acid showed no relaxation (Fig. 1). The ultrasonic absorption coefficient \(\alpha\) at frequency \(f\) is shown as a function of frequency (Fig. 1). The solid line in Fig. 1 is the single relaxation curve of a Debye-type single relaxation equation [6], \(\alpha/f^2 = A/[1 + (f/f_r)^2] + B\) (\(\alpha\): the ultrasonic absorption coefficient, \(A\): the relaxation amplitude, and \(B\): constant resulting from the classical absorption and other sources). As frequency increased at the low frequency range, the value of absorption \(\alpha/f^2\) decreased and reached the high-frequency limiting value \(\lim_{f \to \infty} (\alpha/f^2) = 25 \times 10^{-15} \text{s}^2/\text{m}\), which is similar to the absorption value in water, \(23 \times 10^{-15} \text{s}^2/\text{m}\) [7]. The relaxation process did not occur at frequencies greater than 10 MHz. The excess
where K backward rate constant (k_b) values of benzoic acid and non-ionized aspirin were 2.47×10^8 M$^{-1}$s$^{-1}$ and 7.21×10^8 M$^{-1}$s$^{-1}$, respectively (Table 2), similar to the values of diffusion-controlled reactions. On the contrary, as the guest molecule becomes more hydrophobic, the lower is the k_b value as the result of host-guest complex stabilization. The k_b value of non-ionized benzoic acid (1.81×10^{-6} s$^{-1}$) is larger than that of non-ionized aspirin (1.31×10^{-6} s$^{-1}$), indicating high affinity of non-ionized aspirin than non-ionized benzoic acid in the β-CD cavity. As a result, non-ionized aspirin was released slower than non-ionized benzoic acid. We also studied the interaction of ionized 2-methoxy benzoic acid with β-CD. The k_b value of ionized 2-methoxy benzoic acid (7.48×10^{-6} s$^{-1}$) was 4-fold higher than that of non-ionized benzoic acid (Table 2), indicating that 2-methoxy benzoic acid is readily separated from β-CD cavity because of the interaction with water molecules.

We determined the standard volume change (ΔV) from the amplitude of relaxation (A) using the equation

$$A = 2\mu_m f_r \left(1 + \left(\frac{f_r}{f_b}\right)^2\right)^{-1}$$

Fig. 3. Plots of $2\pi f_r$ vs. $\{(KC_{\beta-CD} + KC_{Guest} + 1)^2 - 4K^2C_{\beta-CD} \cdot C_{Guest}\}^{1/2}$ for non-ionized benzoic acid and β-CD (8.7 mM) in aqueous solution at 25 °C.
on the maximum absorption per wavelength (μ_m) [13]:

$$
\mu_m = 0.5 A f \nu
$$

$$
= \pi \rho \nu^2 (1/|\beta - CD| + 1/|Guest| + 1/|\beta - CD \cdot Guest|)^{-1}(\Delta V)^2/2RT
$$

where R is the gas constant and T is the absolute temperature. The ΔV was determined from the slope of the graph for $2RT\mu_m/\pi\rho\nu^2$ vs. $(1/|\beta - CD| + 1/|Guest| + 1/|\beta - CD \cdot Guest|)^{-1}$ (Fig. 4). Generally, five to seven water molecules exist in the β-CD cavity and some of them are forced to go out when the guest molecule enters the cavity [14]. The ΔV of non-ionized benzoic acid was 15.9×10^{-6} m3mol$^{-1}$ while that of non-ionized aspirin was 15.5×10^{-6} m3mol$^{-1}$, suggesting that benzene ring is completely included in the β-CD cavity. In the case of ionized 2-methoxy benzoic acid, ΔV was 10.6×10^{-6} m3mol$^{-1}$ (Table 2), smaller than that of non-ionized benzoic acid. The charged group of 2-methoxy benzoic acid is considered to hinder the inclusion of benzene ring into β-CD cavity.

Table 2. Rate and thermodynamic constants of benzoic acid derivatives with β-CD at 25 °C.

<table>
<thead>
<tr>
<th>Guest</th>
<th>k_f (108 M$^{-1}$s$^{-1}$)</th>
<th>k_b (106s$^{-1}$)</th>
<th>K (M$^{-1}$)</th>
<th>ΔV (10$^{-6}$m3mol$^{-1}$)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzoic acid (pH≈1.7)</td>
<td>2.47</td>
<td>1.81</td>
<td>137</td>
<td>13.8</td>
<td>This study</td>
</tr>
<tr>
<td>Aspirin (pH≈1.7)</td>
<td>7.21</td>
<td>1.31</td>
<td>549</td>
<td>15.5</td>
<td>Fukahori et al. [4]</td>
</tr>
<tr>
<td>Aspirin (pH≈1.7)</td>
<td>2.08</td>
<td>2.88</td>
<td>73</td>
<td>11.5</td>
<td>Bae [15]</td>
</tr>
<tr>
<td>2-methoxy benzoic acid (pH≈7.0)</td>
<td>5.13</td>
<td>7.48</td>
<td>68.6</td>
<td>10.6</td>
<td>S. Park and J.-R. Bae [5]</td>
</tr>
</tbody>
</table>

IV. CONCLUSION

We investigated the interactions of non-ionized benzoic acid with β-CD in the low-frequency range below 1 MHz. A single relaxation resulting from the dynamic interaction between non-ionized benzoic acid and β-CD in aqueous solution was observed. While the forward process of the complex (k_f) was a diffusion-controlled reaction, the backward rate constant (k_b) suggested that the complex was not stabilized by hydrogen bonds but by hydrophobic interactions between the two solutes. Furthermore, the inclusion complex of β-CD with non-ionized benzoic acid was more stable than that with ionized 2-methoxy benzoic acid. The results of this study suggest that the backward rate constant is affected by the charge group of guest molecules during inclusion complex formation.

ACKNOWLEDGMENTS

This work was supported by the Daegu University Research Grant, 2017.

REFERENCES

