

Inhibition of Endothelial Cell-dependent Serotonin-induced Contraction of β-endorphin and Increment of Plasma β-endorphin of Silver Spike Point Low Frequency Electrical Stimulation

Choi, Young-Duk, P.T., Ph.D.
Dept. of Physical Therapy, Daewon Science College
Lee, Joon-Hee, P.T., M.S.
Dept. of Physical Therapy, Gachongil College
Kim, Jung-Hwan, P.T., Ph.D.
Dept. of Physical Therapy, I-Chon Old · Child Welfare Center

Abstract
The purpose of this study was to demonstrate the effects of silver spike point (SSP) low frequency electrical stimulation on plasma β-endorphin activities measured by radio-immunoassay from normal volunteer and the effects of β-endorphin on 5-hydroxytryptamine (5-HT, serotonin)-induced contraction investigated by isometric tension method in rats.

The current of 3 Hz continue type, but not 100 Hz continue type, of SSP low frequency electrical stimulation significantly increased in plasma β-endorphin from normal volunteer.

The endothelial cell–dependent 5-HT–induced contractions were inhibited by β-endorphin 1
μM.

These results suggest that the β-endorphin regulates nociceptive-like substance, such as 5-HT, in part and that the SSP low frequency electrical stimulation, specifically current of low frequency of 3 Hz continue type, significantly increases plasma β-endorphin from normal volunteer.

Key Word: β-Endorphin, Silver spike point (SSP) low frequency electrical stimulation, Endothelial cell (EC), 5-Hydroxytryptamine (5-HT), Pain.

I. 서론

한편, 물리치료 영역에서 통증억제의 목적으로 은히 경피신경전기자극(transcutaneous electrical nerve stimulation, 이하 TENS)이나 간섭전류치료(interferential current therapy, 이하 ICT), 온열자극, 램사지, 혹은 도수교경 등이 사용되고 있다. 그러나 한방 물리치료의 원리에 근간을 두면서, 침과 동일한 전용 혹은 마취효과 등을 나타내는 전침접전기자극(silver spike point, 이하 SSP, electrical stimulation)에 대한 혈장 β-endorphin 변화에 대한 연구는 매우 미비한 상태에 있다. 더욱이 저주파 주파수와 고주파 주파수 적용으로 나타나는 β-endorphin의 변동유무에 대한 비교연구는 거의 이루어지지 않고 있다.

따라서 본 연구는 인체의 경계에 은침접전기자극을 적용하여, 혈장 β-endorphin의 증감유무를 관찰하였 다. 특히, 3 Hz의 저주파 주파수와 일반 전치자극치료에 많이 사용하는 100 Hz의 고주파 주파수에 대한 결과를 살펴봄으로써 실제 물리치료 임상에 도움이 되고자 하였다. 또한 5-hydroxytryptamine(이하 5-HT, 동의어 serotonin)과 같이 통증과 연관성이 있는 세로토닌성 신경전달물질-유도 균 수축반응에 대한 β-endorphin의 역제유무를 관찰함으로써, 인체연구의 결과에 대한 중요성과 신뢰성을 살펴보고자 하였다.

II. 연구방법

1. 연구대상

1) 실험동물

본 실험에서는 170~190g의 웅성 햄드 15수를 사용하였다(대한미아오링크, 충북우성소재). 야마 후 첫 1주일은 환경점응 기간으로 하였으며, 12시간의 명암주기로 사육하였다. 물과 사료는 충분히 공급하였으며, 사육장의 온도는 자동온도조절장치(히러케이 0300, 임우미앤씨)를 이용하여 20±1℃를 유지하였다.

2) 피 연구자와 연구환경

본 연구는 연령 20~27세, 측정 54±6.2kg, 신장 162±4.1cm (mean±s.e.m.)인 건강에 이상이 없는 자원자
여성 10 명을 무작위로 선발하여 실시하였다. 연구내용은 피 연구자에게 일일 연속하지 않은 상태에서 진행하였으며, 연구실 환경은 24±1°C의 온도를 유지하였다. 생체기능의 오차를 줄이고자 24시간의 항속동체와 동일한 제한적이, 계산용로, 속성환경을 제공하였다.

2. 연구방법

1) 근 수축 실험

2) 은활점진기자극

본 연구는 은활점진기자극(Silver spike point, SSP, electrical stimulation)을 가하지 않은 대조군(Control)과 전기자극을 적용한 전기자극군의 2군으로 나누었다. 전기자극군은 다시 3 Hz의 저변도 주파수와 100 Hz의 고변도 주파수 전기자극의 2군으로 나누어 실시하였다.

본 연구에서 사용한 전기자극은 은활점진기자극기(Dynaroshifter DS-3004, Asahi Denshi Co., Japan)로서 전극은 변형가 없으면서 생방향성 대칭과 일정하게 동전되는 전류형태를 사용하였다(본경용과 이태용, 1996). 전기자극의 조건은 위상기진 190 μs로 15분 동안 통전하였다. 연구 진행시간은 오전(09:00-12시)과 오후(13:18시)로 나누어 총 2회의 60분 전기자극을 적용하였다. 각 군에 해당하는 10 명의 자원자는 모두 동일한이며, 연구조작은 6일 간격으로 총 2회 실시하여 결과를 통계처리 하였다.

전기자극 부위는 경험을 선택하였으며 다음과 같다. 임액의 중극(CV-3)과 관원(CV-4), 촉소유경의 대학(Ki-12), 촉대부경의 삼용교(SP-6), 그리고 촉결음공경의 대동(LR-3)에 각각 동일한 코드에서 나오는 2개의 전극 8개를 바로누운자세에서 15분간 적용하였다. 이어, 촉대상방공경의 지점(BL-52)과 대장음(BL-25), 방광음(BL-28) 그리고 차로(BL-32)를 양드리누운자세에서 15분 적용으로 1회의 전기자극 시간은 총 30분을 실시하였다(양갑상, 1994). 모든 조작은 피 연구자가 바로누운자세에서 실시하였으며 연구에 들여가기에 앞서 30~60분 정도 안정을 취하도록 하였다. 또한 은활점진기자극은 근육의 가시수축이 일어나지 않는 범위에서 피 연구자가 참을 수 있는 정도의 따끔거리는 범위까지 전류강도(10~25 mA)를 높여 본 연구를 진행하였다.

3) 혈액채취와 분석

혈액채취는 전기자극을 적용한 직후 바로누운자세를 유지하여 주의정맥에서 약 10μl의 혈액을 취하였다. 채취한 혈액으로부터 혈장을 분리하고, β-endorphin 전용투즈에 넣어 측정 시까지 방장보관 하였다. β-endorphin의 측정은 radioimmunoassay kit(Bio Rad, USA)을 이용하였으며, 검사는 이원성감사센터(인천 소재)에 의뢰하여 결과를 얻었다.

4) 자료 처리

본 연구의 통계처리는 SAS software version 6.12를 사용하였으며, Student’s t-test를 이용하여 p<0.05일 때 유의한 차가 있는 것으로 보였다. 연구 성적은 mean±s.e.m으로 나타내었다.

III. 결 과

1. 혈관내피세포 유무에 따른 5-HT 유도-근 수축반응에 대한
β-endorphin 억제

5-Hydroxytryptamine(이하 5-HT)-유도 근 수축 반응에 대한 β-endorphin의 억제효과에서, 혈관 내피세포(endothelial cell, 이하 EC)의 중요성을 알아보기 위해 내피세포가 있는 혈관조직(이하 EC+)과 내피세포가 없는 조직(이하 EC-)의 2군으로 나누어 실험시하였다(Fig. 1). 내피세포가 없는 경우, 5-HT로 유도된 근 수축에는 β-endorphin이 아무런 억제효과를 나타내지 않은 반면에(Fig. 1A, C), 내피세포가 있는 조직에서 는 β-endorphin 1 μM이 현저한 근 수축 억제효과를 나타내며 동시에(Fig. 1B, C), 위상성-자발적 근수축 (phasic-spontaneous muscle contraction) 양상을 보이며 수축반응이 감소하였다(Fig. 1B). 그리고 β-endorphin으로 완전히 억제되지 않은 부분은 일산화질소(nitric oxide, 이하 NO) 공급제인 sodium nitroprusside(이하 SNP) 1 μM로 완전히 억제되었다(Fig. 1B).

2. 은침점전기자극에 대한 혈장 β-endorphin 증가

은침점전기자극에 대한 혈장 β-endorphin의 반응을 관찰하기 위해 3 Hz의 저빈도 주파수와 100 Hz의 고빈도 주파수에 대한 비교 실험을 실시하였다. 그 결과 혈장 β-endorphin은 전기자극을 가하지 않은 대조군(4.67±0.42 pg/ml)에 비하여 3 Hz의 저빈도 주파수 전기자극(7.57±0.99 pg/ml)에서 유의한 증가를 보였다 (Fig. 2). 그러나 100 Hz의 고빈도 주파수 전기자극(4.96±0.97 pg/ml)에서는 대조군에 비해 별다른 변화를 나타내지 않았다(Fig. 2).
Fig. 1. Representation tracing obtained by endothelial cell dependent (B) and independent (A) β-endorphin-induced relaxation, and time response curve of β-endorphin 1 μM (C) in rat aortic muscle strips.

5-HT, 5-hydroxytryptamine or serotonin; SNP, sodium nitroprusside; EC+, presence of endothelial cell; EC−, absence of endothelial cell; WO, wash out. * p < 0.05 vs control group.
Fig. 2. Effects of silver spike point electrical stimulation on plasma β-endorphin from healthy volunteer.

SSP, silver spike point low frequency electrical stimulation. * p < 0.05 vs control group.
Fig. 3. Schematic representation of signal transduction of silver spike point low frequency electrical stimulation-induced pain inhibition and analgesic effect.

SSP, silver spike point low frequency electrical stimulation; EA, electroacupuncture; LF, low frequency; HF, high frequency; A-δ, β ANF, A-δ, β afferent nerve fiber; μ-R, μ-type opioid receptor; δκσ ρ -R, δ-type, κ-type, σ-type opioid receptor; cAMP, cyclic adenosine monophosphate.

III. 고 찰

설익은 암부나(Cataplexy somniferum)의 열매에 갈자국을 넓이 흩려내는 원색의 액을 선분에서 건조시키면 알칼로이드가 올린다(Bernath와 Tetenyi, 1982). 이것은 유해자극으로부터 등중 역치를 상승시키는 작용 외에 마취효과, 호흡억제작용, 악물의존성 등의 유/양성적 효과를 함께 지니고 있다(Royer, 1978). 이러한 아편과 비슷한 약물작용을 나타내는 염페타이드들이 쥘라 혈액, 간을 비롯한 기타조직에서 생성성 된다는 것이

위와 같은 내용은 본 저자들의 연구결과와 일치하는 양상을 나타내었으며, 특히 3 Hz의 저번도 주사수 이완전이격기극에서 억제된 β-endorphin이 증가하는 본 연구결과로 미루어, 여러 연구자들이 보고한 저변도 주사수 유도 β-endorphin 생성의 내용을 덜받침해주는 것으로 사료된다. 더욱이 척과 통상의 표면에 손상을 주지 않으면서 동일한 효과가 있는 이완전기극극은 물리치료 일상적 효용가치가 매우 큼 것으로 사료된다.

II. 결 론

이상의 결과로부터 다음과 같은 결론을 얻었다.
1. 내피세포가 존재하는 랜드의 혈관조직에서, β-endorphin은 세로토닌성 전알물질로 유발되는 근 수축반응을 억제시킨다는 것을 알 수 있었다.
2. 인체에 적용한 3 Hz의 저변도 주사수 이완전이격기극에서 혈장 β-endorphin을 증가시킬 수 있
참 고 문 헌

