노화와 관련된 생리학적 변화에 대한 고찰

동양정형외과의원 물리치료실
박규현

Age-Related Physiological Consideration

Park, Kyu-Hyun, P.T., M.S.
Department of Physical Therapy, Donga Orthopaedic Surgery

<Abstract>
Chronic and acute musculoskeletal disorders associated with aging are a challenges to the physical therapy. An understanding of the pathophysiology of normal and pathological aging is imperative for making effective clinical decisions. The foundation for understanding the aging musculoskeletal system is understanding the sequence of normal musculoskeletal development, which begins prenatally.

I. 서론

오늘날 사회, 경제 및 과학과 의학의 발달은 생활수준의 향상과 개개인의 건강상태를 향상시키고, 평균 수명을 연장시키며 노인연구가 현재 연구에서 차지하는 비율을 증가시킴으로 전체적으로 인구의 노령화 시대를 초래하였다. 우리나라로도 65세 이상 고령 인구가 전 인구의 7%를 넘는 고령화 사회로 접어들었다. 이것은 사회적 인구학적 변화에 국한된 것이 아 니고 개인적으로는 부모님 또는 나 자신의 건강관리와 노후 생활을 위한 준비와 계획이 중요하게 될 것임을 예고하고 있다.

Keller(1991)는 노인에게 오는 가장 큰 변화인 생체적 변화의 94%는 근육과 뼈의 문제라고 보고하였고, 이선자와 박종석(1990)은 노인병 전문 의료기관, 보건소, 보건진료소를 이용하는 노인 229명을 대상으로 하여 간호 요구도를 측정한 바에 의하면 근골격계 질환이 26.8%로 가장 많았다고 하였다. 이와 같이 신체적, 신체적, 일반적, 정신적, 정서적, 감각적, 운동기능 등에 의한 근력약화가 노인에게 중요한 문제가 될 수 있다.

Smith & Gilligan(1984)은 인간의 생리적 능력은 해마다 0.75-1%의 감소를 보인다고 하였고 Genant(1982), Kathleen(1993), Roy & Shephard(1993)는 생리적 노화 현상으로 체중 및 체적량 증가, 근력 및 근지구력의 감소, 뼈밀도 감소, 근위축 등 인체의 모든 기관과 장기 는 그 기능이 저하되고 만성 퇴행성 질환 및 내적, 외적 스트레스에 의한 질병의 발생률이
높아진다고 하였다.
노화와 관련된 골절성 골격계 질환은 몸해치료사에게 중요한 치료 분야이다. 정상적인 노화와 병리학적인 노화의 이هما는 임상적 효과를 위한 자료 계획 수립에 필요 증가가한 것이 다. 노화와 관련된 근골격계의 이환을 위한 기조는 정상적으로 발달하는 근골격계를 이해하는 것이다.
따라서 본 연구에서는 고령에서 발생되는 근골격계의 발달과 노화에 대하여 자세히 고찰하고자 한다.

II. 골격에 대한 고찰

1. 골화 과정

골형성 과정은 난자에 수정이 이루어진 후 약 3개월정 나이에 시작된다. 초자방공의 전구체가 골격을 형성한다. 이와 같은 초자방공과 막 전구체들이 골화로 알려진 칼슘 쌍작을 위한 단계를 설명한다.

연골성 골격 프로세스의 시작은 중엽부에서 유도되며 무혈관과 무신경이다. 연골막이라고 불리는 판막은 이 단계에서 나타난다. 무혈관 연골에 혈관이 들어가기 시작하고 화골 과정이 완성되기 시작한다. 골간의 골화는 각각의 골단으로 끌어 나가며 연골은 희생되어 골수강을 만들기 시작한다. 이차적인 골화 중추는 골단으로 시작하고 골간을 통해 성장한다. 연골 부위는 골단 연골 혹은 성장판으로 알려진 골단과 골간 사이에 남는다.

2. 뼈의 현미경적 구조

치밀골은 모든 뼈의 피질부위에서 발견된다. 간뼈의 골간 강도를 유지하기 위하여 필요하며 현미경적 구조는 골격의 기초를 이루며 뼈의 작용에 중요한 역할을 하는 괴도의 혈관이 분포되어 있는 대사 활동세포로 구성되어 있다.

하버스체는 각각의 간뼈 골간 안에 치밀골을 만들고 역학적 스트레스에 대하여 선행으로 배치되어 있고, 이것은 통하여 전달되는 힘을 줄일 수 있도록 최대의 구조적 안정성을 위해 경화된 모양을 만든다(Bernhardt DB, 1988).

해면질골은 임차적으로 장골단, 적추체 그리고 두개골이나 골반 같은 평면골에서 발견된다. 해면질골은 치밀골로 덮여있는 결절로 구성되어 있으며, 결절은 높은 구조적 통합성을 가진 가비온 골격을 구성한다(Dunne KB와 Clarren SK, 1297). 소주(tubeculae)는 수직과 수평으로 배열되어 있어 최대한의 힘을 낼 수 있으며(LeVeau BF와 Bernhardt DB, 1874-1881), 소주 정유(tubeculae strand)는 높은 대사를 가지며 강력한 강도를 발달시키고 유지하도록 하는 근육 결합 능력에 달려 있다(Walker JM, 1991).

3. 뼈의 기능

골격을 지지하는데 강력한 강도는 수조면 철과 거의 같으나 철의 무게의 3분의 1이 안된다 (Bernhardt DB, 1839). 장력 강도는 뼈의 미세 구조적 결과이다.

뇌와 음곽의 내장기관, 뇌부, 그리고 공판장을 보호하는 기능과 신경계와 조합하여 유기체의 환경 내로 응용이에 있는 중요한 역할을 한다. 응직임은 골절 혹은 뼈의 탐식화와 관련된 골격근의 비정상을 초래할 수 있다.

그리고 생은 골수에서 혈액 세포를 만드는 조합작용을 한다.

4. 구조적 통합

비타민 D는 활성 비타민 D로 변환되며 공급은 주로 식사로부터 섬취. RDA는 400IU이다. RDA는 노인에게는 800IU를 증가시킨다 (Storey E, 1975). 또 다른 공급은 피부를 통한 자외선의 자극으로 내분비 작용에 의해 만들어진다 (Storey E, 1975).

호르몬은 내세포 감습 농축을 적절히 유지하는데 중요한 역할을 한다.

재형성은 일상을 통하여 일어난다. 골격 동향과 골밀정 항강성의 유지는 일생동안 골질세포와 골심세포에 의한 골형성을 통해 뼈의 재흡수의 지속적인 과정을 거쳐 일어난다 (Siffert RS, 1981).

최대 골밀량은 28세에서 35세 사이의 골격계에서 감습의 끝이 기록되었다 (Stuberg W, 1993).

탈광물질에 기여하는 인자는 침습 유 효성으로 섭취, 흡수, 카페인 효과, 알코올 효과 등이 있다.

흡연은 연구에 의하면 담배를 피우는 여성의 끔찍한 피부질이 피우지 않는 여성에 비하여 낮다. 결론적으로 담배를 피우는 여성은 그렇지 않은 여성에 비하여 골다공증에 의한 골절 위험성이 높다(Hoffer MM 등, 1980).

유전은 미국에서 흉인은 다른 인종에 비하여 골밀도가 크고 골다공증이 적다(Davenport C, 1944). 백인 여성에서 나이와 관련된 특수한 골질은 전연령 중에서 흉인 여자에 비하여 두 배 정도가 된다(Hoffer MM, 1980).

성에 대하여 유의할 만한 연구의 결론은 50세 이상의 여성에서는 패의 탈광물질로 인한 골다공증이 관련된 골질이 남자보다 두 배 이상 이고, 에스트로겐과 페경의 영향으로 전연령 중에서 남자보다 골다공증이 두배 정도 높다(Forero N, Okamura LA, Larson MA, 1989, Bleck EE, 1987).

관련된 문제는 의사는 에스트로겐과 황제호르몬의 지속적인 치료를 하지 않는다.

저밀도와 관련된 문제로 첫째, 골다공증은 폐경 1년에 1-2%의 피질골 소실과 폐경 후 첫 5년이 계속되는 15년보다 많은 골소실이 있다(Bleck EE, 1987, Moll JM, Liyange SP, Wright V, 1972). 폐경 후 25년을 설령 3분의 1이 폐경 후 골다공증과 관련된 골절을 경험하게 된다.

나이와 관련하여 전 생애를 통하여 골피질과 골소조가 천천히 3-5%로 일차하여 소실된다(Bleck EE, 1987).

운동과 골다공증 연구에서 많이 일치되는 부분은 패에 스트레스를 주지 않는 것과 함께 체중부하의 감소와 관련이 있으며, 가끔 나이와 함께 일어나고 연속되는 골소실과 함께 칼슘 재흡수의 결과로 나타난다(Dunne KB와 Clarren SK, 1986). 이와 같이 두용성 골다공증을 예방하기 위하여서는 각각 체중부하와 패에 스트레스를 주는 운동이 필요하다.

해나하면 이와 같은 건강과 관련된 체험성은 기본적으로 국소적인 반응이며, 각각의 패들은 말그대로 어떤 형태의 높은 건강에 대한 경험이 가지고 있다.

연구에 의하면 골절량의 획득 및 유지는 이와 같은 고강도, 단기간 건강을 칼슘 조절 호르몬에 의해 패의 탈광물질 상쇄에 도움이 된다(LeVeu BF등, 1984).

공제, 골절은 미국에서 거의 120-150만명이 골다공증 관련 골절을 일으키고 있다. 거의 44% 가 척추, 10%가 골판결, 14%는 요골절 그리고 나머지 23%는 사지골절이었다(Bleck EE, 1987). 일반적으로 골다공증 관련 골절 부위는 높은 골소주 골간형성 부위에 영향을 미친다(Harris NH등, 1976).
Ⅲ. 가동관절과 노화

1. 가동관절의 구조

변성은 관절이 완전한 가동범위의 소실은 연골부위의 영양공급이 부족하게 되고 관절에서 서 다른 관절로 더 이상 수축할 수 없게 된다. 관절 지면의 비수축 부위에 파손의 변화가 일어나는 것은 구축된 관절에서 관찰된다(Lilienfeld AM 등, 1954).

압박력을 흡수하는 연골은 위와 아래에 세합이 나타나며 적은 부하와 부부하 관절 모두에 연골 소설과 손상을 일으킨다.

연골의 기계적 특성은 나노 인구의 중요한 문제이다(Stuberg WA, Metcalf WK, 1988).

2. 관절 연골 소실

관절 연골 소실의 가장 일반적인 원인은 비행성 관절 질환이며, 연골하 골은 침범한 관절 연골에 외부 기계적 손상의 결과로 나타나고 이러한 관절연골 소실은 공극적으로 다른 빛로 옮겨진다(Stuberg WA 등, 1988).

관절 연골 소실은 속성수축, 외상유화 그리고 연골하골 침범 등 3단계가 소실과 치명이 진행되는 부위에 나타난다.

3. 노화와 관련된 관절의 문제

1) 골관절염

골관절염의 원인은 다양하다. 한 요인으로는 초저연골의 구조적 파괴이며 그리고 계속해서 연골하 침범이 일어난다. 골관절염은 미국에서 1년에 1000만 명이 발생하고 150억불이 사용
2) 관절 주위 결합조직 첨병

인대, 건, 전막, 관절낭과 관련된 조직, 그리고 근육내 결합조직을 포함한다. 나이와 함께 관절 조직의 강성이 증가한다.

동물연구 결과에서 나이에 따른 근육의 엣셋함(stiffness)의 증가와 관련하여 근육내 조직에 콜라겐 함량이 증가하는 경향을 보인다(Magee DJ, 1992).

활동적이나 신체활동의 감소는 노화와 관련이 있고, 또한 이것은 관절의 엣셋함과 강한 연관이 있고, 노력을 하면 노화와 관련된 관절 닫김(tightness)은 활동과 운동을 통하여 부분적으로 전체적으로 예방할 수 있다.

관절 주위조직의 고정에 대한 영향의 연구는 관절낭과 관련구조물의 신장성 소실은 관절 운동성이 감소될 것이라는 것을 증명하였다. 이 연구는 남아가 관절운동 범위의 소실은 이차적으로 진행적인 유연성이 20-30%가 감소하기 때문에 만주만한 증가가 필요하다(Nelson K, 1988).

IV. 근육계와 노화

1. 근육의 힘

개인의 등척성 및 역동적 근육의 힘은 30대까지 일반적으로 증가한다. 이러한 힘은 50대까지 패 유지가 된다(Styer–Acevedo J, 1993).

2. 무용성 위축과 노화

무용성 위축과 노화 모두에서 효과는 유사한데, 결과적으로 힘의 소실, 근지구력의 소실, 근부피의 소실이 나타난다(Molnar GE, 1972).

 일반적으로 60세를 지나면 힘은 감소하고 80세까지 가속화된다.

3. 근섬유 형태의 변화

1). 빠른 연속

노화와 관련한 빠른 연속성유의 일반적인 감소는 이차적으로 무용성 위축과 관련이 있다고 가정 할 수 있다. 빠른 연속성유는 무용성으로 이미 위축이 발생하기 때문에 고정은 별 영향을 미치지 않는다(Bly L 등, 1980).

2). 느린 연속성유

고정 기간동안 이와 같은 느린 연속성유는 정상 자극을 받지 않고 위축상태로 변하게 된다(Bly L 등, 1980). 나이와 관련된 느린 연속성유 위축은 제가에서 이차로 실제적인 미토콘드리아에 영향을 주는데, 유산소대사를 위한 세포 소기관의 원리와 노화에 의해 크게 영향을 주지 않는 것으로 보인다.

4. 운동의 긍정적 효과

노인들에게 운동에 의한 이차적인 근력 개선은 대사, 형태학적, 그리고 신경학적을 동시에 적용된 것으로 보인다. 노인환자들에게 근력을 개선하기 위한 최대의 장점은 근력 개선이 근비대를 가지기 때문에 신경근 연합의 개선과 관계가 있다(Mykebust BM, 1990). 운동의 예외소도 사이에 적절한 회복 시간은 신경연합을 강조해야 한다.

한번 근섬유가 과장되어 일어나면 다시 일어날 수 있다(Bobath B, Bobath K, 1975). 근육의 비대가 일어나는 것의 분명한 증거가 있는데, 연구에 의하면 근육의 증가는 50%가지
는 근력기능에 : 나머지 50%는 근자체의 신경원 연결의 개선에 기여한다(Mykebust BM, 1990).
약한 노인들의 하악화와 낙상은 분명한 관계가 있다는 증거가 있다(Shin AM, 1990). 아무
론 하약한 노인들에게 독립적 기능 운동성의 증가와 함께 근력확득과 낙상 감소 사이에 긍
정적인 관계를 연구에서 보이고 있다.
비록 선형연구에서 하지와 등근육의 큰 위축을 보였더라도, 이 연구는 상지 운동프로그램
을 잘 적용했을 때는 매우 좋은 근력증가 효과를 보였다. 이것은 일상생활주행 수행에 좋은
잠재력을 가지고 있다(Brook MH, 1986).

V. 결론

본 고찰을 통하여 근골격계에서 노화와 관련된 유해한 효과를 논의해 보았다. 근육의 탐광을
존, 골다공증과 관련된 급격, 관절가동범위 상실, 근력의 감소와 같은 많은 노화의 흔적을
받았고, 이차적인 부주의보다는 노화에 의한 변화가 그렇게 적절적인 원인이다. 이는
연구에서 고려할 사항은 근골격계의 노화의 중요성을 개선하기 위한 보다 가치있는 치료의
적용은 물리치료 전문가에 의해 분명히 중요하다. 물리치료는 환자의 삶의 질에 길게 그리고
자동적으로 영향을 미치고 관습적인 예방 정책뿐 아니라 예방 전략 수행으로 이동하고 하였
다. 연구에서처럼 전문가에 의해 수행되고 계획되어야 한다고 강하게 밝고 있으며, 물리치료
사는 보다 개선된 환자관리를 할 확실한 책임이 있다.

<참 고 문 헌 >

배성수, 박래춘 : 노인 환자의 제활, 대한물리치료학회지, 제2권, 제1호, 1990.
이선자, 박종식, 보건의료 이용노인을 대상으로 한 가정간호 요구 조사. 한국노인학회 추계
학술 발표회, 1990.
Albright J, Brand R (eds): Scientific Basis of Orthopedics. New York,
Alexander J, Molnar GE: Muscular strength in children preliminary report on objective
m] 1936.
Berhardt DB: Prenatal and postnatal growth and development of the foot and ankle.
Bleck EE: Orthopaedic Management in Cerebral Palsy. Philadelphia, J. B. Lippincott
Movement in Infancy. Chapel Hill, NC, University of North Carolina at Chapel
Hill, Division of Physical Therapy, 1980.
Harris NH: Acetabular growth potential in congenital dislocation of the hip and some factors upon which it may depend. Clin Orthop 1976.

