A comparative study on the cardiovascular function response to maximal exercise of chronic low back pain patients and normal group

Um, KI-Mai, Ph.D.
Department of Physical Therapy, Yeojoo University

Kim, Gun-Do, Ph.D.
Department of Physical Therapy, Yeojoo University

Hwang, Myoung-Hoon, M.S.
Department of Physical Education Graduate School, Konkuk University

<Abstract>
This study is aimed to determine the cardiovascular function response to maximal exercise of chronic low back pain patients(N=13) and normal group(N=13).

By using BRUCE PROTOCOL, subjects underwent treadmill exercise test. Their cardiovascular function responses during rest and after maximal exercise were compared. The responses were analyzed using t-test for SPSS 7.0 program. The Cardiovascular function variables employed at rest time(Vo2, HR, Vo2/kg, VE, Vco2,) and all out time(Vo2peak, HRpeak, Vo2peak/kg, VEpeak, Vco2peak). Result show that:

1. There was no significant difference in Vo2 between chronic low back pain patients and normal group at rest time. However significant difference in Vo2peak was observed after maximal exercise(p<.05).

2. There was no significant difference in HR between chronic low back pain patients and normal group at rest time. No significant difference in HRpeak likewise observed.

3. There was no significant difference in Vo2/kg between chronic low back pain patients and normal group at rest time. However significant difference in Vo2peak/kg was observed after maximal exercise load(p<.05).

4. There was no significant difference in VE between chronic low back pain patients and normal group at rest time. However significant difference in VEpeak observed after maximal exercise load(p<.05).
Ⅰ. 서 론

인간의 고령화와 고도의 산업화로 인한 운동부족 그리고 갈라진 사회로 인한 체중증가증으로 인해 신체철학의 균형이 없다는 점을 고려할 때, 요동과 체중증가, 신체활동 부족은 전반적으로 증가하고 있는 추세이다. 요동과 체중 증가는 체력을 얇아지게 하며, 고령화의 성인의 건강에 미치는 영향을 가중치하게 되고 있다. 이러한 요동과 체중증가는 체중이 증가하면서 신체활동의 질을 감소시킨다(한상완, 1998).

이와 같은 사례에 있어 요동과 체중 증가는 체력 감소, 체지방 증가, 인체의 능력 감소, 심장기능 저하 등의 결과가 나타난다. 요동과 체중 증가는 체력 감소, 체지방 증가, 인체의 능력 감소, 심장기능 저하 등의 결과가 나타난다. 요동과 체중 증가는 체력 감소, 체지방 증가, 인체의 능력 감소, 심장기능 저하 등의 결과가 나타난다. 요동과 체중 증가는 체력 감소, 체지방 증가, 인체의 능력 감소, 심장기능 저하 등의 결과가 나타난다. 요동과 체중 증가는 체력 감소, 체지방 증가, 인체의 능력 감소, 심장기능 저하 등의 결과가 나타난다.


이상의 설명을 종합해 보면, 체육 promin자에 있어 심폐기능을 항상시키기 위한 지구성 운동의 유의성을 인식할 수 있다. 그러나 요동과 체중 증가에 대한 행위연구들은 요동과 체중증가, 체력 감소, 체지방 증가, 인체의 능력 감소, 심장기능 저하 등의 결과가 나타난다. 요동과 체중 증가는 체력 감소, 체지방 증가, 인체의 능력 감소, 심장기능 저하 등의 결과가 나타난다. 요동과 체중 증가는 체력 감소, 체지방 증가, 인체의 능력 감소, 심장기능 저하 등의 결과가 나타난다. 요동과 체중 증가는 체력 감소, 체지방 증가, 인체의 능력 감소, 심장기능 저하 등의 결과가 나타난다.

Ⅱ. 연구방법

1. 연구 대상

본 연구의 대상자는 서울 소재 W병원에서 X-ray, CT, MRI 등의 특수사양장비를 이용한 검사에서 진단으로부터 진단을 받은 만성요동화자로서 운동을 시행하지 않았던 요동과 체중 증가자군 13명과 대조군으로 운동치로 환경에 맞설 수 없는 병원 근무자 13명을 대상으로 선정하였다. 이들의 신체적 특성은 표 1에서 보인 바와 같다.
표 1. 신체적 특징(M±SD)

<table>
<thead>
<tr>
<th>집단</th>
<th>변인</th>
<th>명.평</th>
<th>세.평</th>
<th>신.장</th>
</tr>
</thead>
<tbody>
<tr>
<td>청장인집단</td>
<td>27.38±8.53</td>
<td>72.51±8.36</td>
<td>174.84±5.09</td>
<td></td>
</tr>
<tr>
<td>만성요용환자 집단</td>
<td>28.61±5.34</td>
<td>72.53±7.82</td>
<td>176.15±6.02</td>
<td></td>
</tr>
</tbody>
</table>

2. 측정항목 및 방법

피험자의 최고산소소취량은 자동호흡기자동시스템 (Air 4500, Quinton Co USA)을 이용하였으며, 실정에
적용된 운동우편법은 Bruce Protocol을 사용하였다.
측정전 검사에 대한 내용을 미리 설명하여 피험자가
완전히 숙지한 후에 실시하였으며, 먼저 트레드밀
(Treadmill)에 앉아서 가는 뒤 트레드밀 위에서
보행연습을 시행한 후 실시하였다. 운동중에 12 lead EKG
에 의한 임상적 중속도 운동증되의만을 연속적으로 관찰하여
임상적으로 이상이 없는 것을 확인하였으며, 또한
피험자의 안정성 반응을 지속적으로 관찰하여 이상이
없는 것을 확인하였다. 이상이 발견되는 경우나 피험자
가 주관적으로 운동강도를 파악하도록 하여 운동증대를
신호할 때에는 운동을 즉시 중단하였다.
최고산소소취량의 판정기준은 부하량 중간치에도
불규칙한 산소소취량이 거의 중간치나는 고혈압대
(levelling-off)를 나타나며지점으로 정하였다. 운동부하
검사의 모든측정과정은 미국대학스포츠의학회지 저침시
(ACSM, 1995)에서 제시된 내용에 따라 실시하였다.
피험자의 심폐기능 축정기준은 운동중 안정기간과 최대
우편부하기준을 기준으로 변환을 분석하였으며, 축정 변
인은 항정시 산소소취량(Vo2), 심박수(HR), 단위정
당산소소취량(Vo2/kg), 환기량(Ve)과 최대운동부하후
최고산소소취량(Vo2peak), 최고심박수(HRpeak), 단위
정당최고산소소취량(Vo2peak/kg), 최고환기량
(VEpeak)을 측정하여 비교분석하였다.

3. 자료처리 방법

본 실험 측정 결과의 모든 자료는 SPSS 7.5 for
Windows 통계 프로그램을 사용하여 각 변인들의 관계
을 규명하고 평균과 표준 편차를 구하였으며, 집단간의
차이를 알아보기 위해 t-test를 실시하였으며, 모든 통계
적 유의 수준은 P<0.05로 설정하였다.

Ⅲ. 결과 및 논의

본 연구에서는 최대운동중 만성요용환자 집단과 정상
인집단의 심폐기능 반응을 비교분석하기 위하여 안정시 산
소소취량(Vo2), 심박수(HR), 단위정당 산소소취량
(Vo2/kg), 환기량(Ve)을 측정하였으며, 최대운동부하
후 최고산소소취량(Vo2peak), 최고심박수(HRpeak),
단위정당최고산소소취량(Vo2peak/kg), 최고환기량
(VEpeak)을 측정한 결과는 다음과 같다.

1. 산소소취량 변화

최대운동중 만성요용환자와 정상인의 안정시간이 최대
운동부하 후 최고산소소취량에 대한 측정을 실시한 결과
(표 2)와 같은 결과를 얻었다. (표 2), (그림 1)에서 보
는 바와 같이 안정시 산소소취량은정상인집단에서 0.342
±0.126, 만성요용환자집단에서 0.381±0.110로 나타
났으며, 안정시산소소취량에대한 t-test 결과 통계적으
로 유의한 차가 나타나지 않았다.

표 2. 산소소취량 변화

<table>
<thead>
<tr>
<th>측정시간</th>
<th>집단</th>
<th>Mean±SD</th>
<th>t-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>안정시</td>
<td>청장인</td>
<td>0.342±0.126</td>
<td>0.244</td>
</tr>
<tr>
<td></td>
<td>만성요용환자</td>
<td>0.381±0.110</td>
<td></td>
</tr>
<tr>
<td>최대운동부하후</td>
<td>정상인</td>
<td>3.895±0.539</td>
<td>3.382 *</td>
</tr>
<tr>
<td></td>
<td>만성요용환자</td>
<td>2.393±0.800</td>
<td></td>
</tr>
</tbody>
</table>

* P<0.05
그림 1. 산소섭취량 변화

최대운동부하 후 최고산소섭취량을 측정한 결과는 정상인집단에서 3.895±0.539, 만성용혈환자집단에서는 2.393±0.800로 나타났으며, 최대운동부하 후 최고산소
섭취량에 대한 t-test 결과 통계적으로 유의한 차가 나타
났다(p<0.05).

만성용혈환자나 척수혈관생이 일반 적임생물계에 비
해 산소섭취량 수준이 낮은 이유는 혈관동맥 조절능력이
상실되므로 혈액배출량이 작아지고 혈액교환량이 감소하
므로 산소 및 친화의 혈액성이 제한되며, 이 결과로 혈액용량이 낮아지게 된다(Smith et al., 1976; 이동기, 1992).

또한 만성용혈환자나 척수혈관생이들은 관절근의 맥락
의 더불어 증후성경계의 운상으로 정상적인 운동반응에
필요한 자율신경 반응이 반해 반대되어 그 결과 운동근에
산소와 영양분질을 공급하고 노폐물을 제거하기 위해 혈
류를 공급하는 적절한 혈액관리가 저하되므로 인해 최대
산소능력이 낮아진다고 보고되고 있다. 따라서 운동에
사용되는 근육이 정상인보다 50% 정도가 적어 복합적
인 생리적 영향을 받게 되어 결국 최대산소능력이 낮아
지게 된다고 사료된다.

2. 심박수 변화

최대운동시 만성용혈환자와 정상인의 안정시와 최대
운동부하 후 최고심박수에 대한 측정 결과 (표 3)와 같은
결과를 얻었다.

(표 3). 그림 2에서 보는 바와 같이 안정시 심박수
는 정상인집단에서는 62.538±14.655, 만성용혈환자집
단에서는 68.846±13.875로 나타났으며, 안정시 심박
수에 대한 t-test 결과 통계적으로 유의한 차가 나타나지
없었다. 최대운동부하 후 최고심박수에 대한 측정한 결
과는 정상인집단에서 194.923±5.482, 만성용혈환자집
단에서는 198.307±8.107로 나타났으며, 최대운동부하
후 최고심박수에 대한 t-test 결과 통계적으로 유의한 차
가 나타나지 않았다.

이러한 결과는 일반적으로 만성용혈환자 또는 척수혈
관생이들은 정상인보다 보행에 필요한 에너지보다
적은 에너지로 소모함으로 해서 운동부하나 소근육에
걸리기 때문에 보행시 심박수는 동일한 산소소비를 소비
하는 정상인보다 척수혈관생이가 더 높다는 연구보고와 일치하는 것을 볼 수 있다(Clausen et al., 1973; Sawka et al., 1982). 따라서 만성용혈환자나 척수혈관생이들은
심박수가 정상인보다 높은 이유는 국부근육의 피로와 전
반적인 체력저중이 낮기 때문인 것으로 사료된다.
표 3. 심박수 변화

<table>
<thead>
<tr>
<th>측정시간</th>
<th>집단</th>
<th>Mean±SD</th>
<th>t-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>안정시</td>
<td>정상인</td>
<td>68.846±13.837</td>
<td>1.917</td>
</tr>
<tr>
<td></td>
<td>만성혈관환자</td>
<td>62.538±14.655</td>
<td></td>
</tr>
<tr>
<td>최대활동부하후</td>
<td>정상인</td>
<td>196.923±5.482</td>
<td>0.279</td>
</tr>
<tr>
<td></td>
<td>만성혈관환자</td>
<td>198.307±8.107</td>
<td></td>
</tr>
</tbody>
</table>

* P<0.05

그림 2. 심박수 변화

3. 단위체중당산소섭취량 변화

최대활동시 만성혈관환자와 정상인의 안정시와 최대 활동부하후 단위체중당 최고산소섭취량에 대한 측정 결과 (표 4)와 같은 결과를 얻었다. (표 4, 그림 3)에서 보는 바와 같이 안정시 단위체중당 산소섭취량 측정 결과 정상인집단에서는 4.953±1.612, 만성혈관환자집단에서는 5.276±1.585로 나타났으며, 안정시 단위체중당 산소섭취량에 대한 t-test 결과 통계적으로 유의한 차가 나타나지 않았다. 최대활동부하후 단위체중당 최고 산소섭취량을 측정한 결과는 정상인집단에서 37.284±9.100, 만성혈관환자집단에서는 32.960±5.144로 나타났으며, 최대활동부하후 단위체중당 최고산소섭취량에 대한 t-test 결과 통계적으로 유의한 차가 나타났다 (p<0.05).

이러한 결과는 단위체중당 최고산소섭취량은 적수손상자보다 정상인이 높다는 기존의 연구와 일치하며(이동기, 1992). 만성혈관환자나 적수손상자의 심폐적상이 낮은 것은 활동기능과 운동효과라는 동기부여로 신체활동이 제한 받기 때문이라고 사료된다.

표 4. 단위체중당 산소섭취량 변화

<table>
<thead>
<tr>
<th>측정시간</th>
<th>집단</th>
<th>Mean±SD</th>
<th>t-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>안정시</td>
<td>정상인</td>
<td>4.953±1.612</td>
<td>1.515</td>
</tr>
<tr>
<td></td>
<td>만성혈관환자</td>
<td>5.276±1.585</td>
<td></td>
</tr>
<tr>
<td>최대활동부하후</td>
<td>정상인</td>
<td>37.284±9.100</td>
<td>3.485*</td>
</tr>
<tr>
<td></td>
<td>만성혈관환자</td>
<td>32.960±5.144</td>
<td></td>
</tr>
</tbody>
</table>

* P<0.05
4. 환기량 변화

최대운동후 만성종환자와 정상인의 안정시와 최대 운동부하 후 환기량에 대한 측정 결과 (표 5)와 같은 결과를 얻었다.

표 5. 환기량 변화

<table>
<thead>
<tr>
<th>측정시간</th>
<th>집단</th>
<th>Mean±SD</th>
<th>t-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>안정시</td>
<td>정상인</td>
<td>8.338±2.912</td>
<td>2.222*</td>
</tr>
<tr>
<td></td>
<td>만성종환자</td>
<td>10.946±3.070</td>
<td></td>
</tr>
<tr>
<td>최대운동부하 후</td>
<td>정상인</td>
<td>85.392±16.412</td>
<td>6.926*</td>
</tr>
<tr>
<td></td>
<td>만성종환자</td>
<td>58.400±18.577</td>
<td></td>
</tr>
</tbody>
</table>

* P<.05

(표 5). (그림 4)에서 보는 바와 같이 안정시 환기량 측정 결과 정상인집단에서는 8.338±2.912, 만성종환자 집단에서는 10.946±3.070로 나타났으며, 안정시 환기량에 대한 t-test 결과 통계적으로 유의한 차가 나타났다 (p<.05). 최대운동부하후 환기량은 정상인집단에서 85.392±16.412, 만성종환자집단에서 58.400±18.577로 나타났으며, 최대운동부하 후 환기량에 대한 t-test 결과 통계적으로 유의한 차가 나타났다 (p<.05). 이러한 결과는 일반적으로 환기량은 폐가 다시 움직여 들리는 수축력과 기도의 직경에 좌우되는 정상인이 만성종환자나 식수손상자에 비해 폐의수축력과 기도직경이 크므로 환기량이 큰수밖에 없다. 따라서 만성종환자나 식수손상자 정상인에 비해 환기량이 낮은 것으로 사료된다.
본 연구는 정상인집단(\(N = 13\))과 만성요통환자(\(N = 13\)) 집단을 대상으로 정중적 최대 운동 부하 점검시 심폐기능과 관련 생리적 변화를 비교 분석하여 전체 변화를 규명하고 스포츠재활 과정에서 운동치료와 건강 증진에 활용할 수 있는 기초 자료를 제공하고자 시도하였으며, 연구결과 다음과 같은 결론을 얻었다.

1. 안정시 정상인집단과 만성요통환자집단의 신소십취량은 통계적으로 유의한 차가 나타나지 않았으며, 최대운동부하후 정상인집단과 만성요통환자집단의 최고산소십취량을 측정한 결과 통계적으로 유의한 차가 나타났다(\(p < 0.05\)).

2. 심박수는안정시, 최대운동부하후 정상인집단과 만성요통환자집단에서 모두 통계적으로 유의한 차가 나타나지 않았다.

3. 안정시 단위 체중당 산소십취량은 통계적으로 유의한 차가 나타나지 않았으며, 최대운동부하후 정상인집단과 만성요통환자집단의 단위체중당 최고산소십취량을 측정한 결과 통계적으로 유의한 차가 나타났다(\(p < 0.05\)).

4. 환기량에서는 안정시 통계적으로 유의한 차가 나타났으며(\(p < 0.05\)), 최대운동부하후 최고환기량을 측정한 결과 통계적으로 유의한 차가 나타났다(\(p < 0.05\)).
arms by use of anthropometric measures: Spine 12(3), 273-275.


