골반의 운동학적 고찰

대구대학교 재활과학대학 물리치료학과
배성수
광주보건대학교 물리치료학과
김태윤
대구대학교 재활과학대학원 재활과학과 물리치료전공
정현애
대구경희병원방병원 물리요법과
배주한

A Comprehensive Kinematic Approach to Pelvis

Bae, Sung-Soo, P.T., ph.D.
Department of Physical Therapy
College of Rehabilitation Science, TaeGu University

Kim, Tae-Yoon, R.P.T., ph.D.
Department of Physical Therapy Kwang-Ju Health College

Chung, Hyun-Ae, P.T.
Department of Physical Therapy
Graduate School of Rehabilitation Science, TaeGu University

Bae, Ju-Han, P.T., M.A.
Department of Physical Therapy
Taegu Kyung Hee Oriental Hospital

<Abstract>
Alignment of the hip joint and pelvis affects its weight-bearing capabilities as well as the motion available at the joints. The normal hip joint is well designed to withstand the forces that act through and around it, assisted by the trabecular systems, cartilagious, muscles, and ligaments. Alterations in the direction or magnitude of forces action around the injury and degenerative changes. The integration of motion of the pelvis with motion of the vertebral column not only increases the ROM available to the total column but also reduces the amount of flexibility required of the lumbar region.

In any instance in which there is normal or abnormal pelvic motion during weight bearing and the head must remain upright, compensatory motions of the lumber spine will occur if available. The motions that occur at the hip, pelvis, and lumbar spine during forward trunk bending with the motions that occur during anterior and posterior tilting of the pelvis in the erect standing position.

Ⅱ. 골반의 해부학적 구조

골반(pelvis)이란 "바다같은 대배(basin)"라는 뜻(Henry와 David, 1991)으로 골반은 체간의 기저부를 형성함과 동시에 제 거지를 지지하고 하지와 허리를 연결한다. 골반(basin)이란 4개의 골불 부가 3개의 관절로 이루어진 편평구방관절(closed osseo-articular ring)이다. 4개의 뿌리 변화에서 1개의 공(coccyx)과 5개의 현가 이어지는 공(coccyx)과 3개의 마추가 이어지는 1개의 마추로 되는 이

- 94 -
과(cooey)이다(신문, 30, 1998). 이 구조물은 더 쉽게 기억하기 위해서는 인체에 의해 관찰되어 있는 분위의 상세로 연구해야 한다. 관절은 실질적으로 두 개의 공간을 가지고 있으며 이를 사이에 형성된 공간을 대골반 (major pelvis; false pelvis)라고 부른다. 소골반 (minor pelvis; true pelvis)은 대골반보다 약간 작고 척추, 척추, 족골 및 장골 하부에 위치하고 있다. 관절은 이 상부 복강에 영향을 줄 수 있는 입구(pelvic inlet)라고 부르며, 아래쪽으로 열리는 부분은 절반 출구(pelvic outlet)라고 부른다. 절반 출구는 생체에서는 근육들에 의해 막혀 있다(Henry와 David, 1991).

관절부의 뼈들은 좌, 우 관절, 척추간의 이동으로 구성되어 있다. 관절은 3개의 부분인 장골, 좌골, 족골로 이루어져 있다. 장골의 중요한 부분들로 장골대의 전방중심골(ASIS), 후방중심골(PSIS)과 칙절절골을 볼 수 있다(Susan, 1989). 관절은 밑에 있는 골 사이에 있어서 이중이 있다. 여성의 관절은 폭이 넓고 열리 있으며, 관절을 포함하는 상악부를 넘어 남성과 비교해 높은 골연장을 갖추고 있는 남성의 것보다 크다. 또한 여성의 관절 구조는 크고 보다 넓게 개방하고 있다. 이와 같은 구조상의 차이는 변동과 관련되어 있다. 결국 태어나는 여자 야생내에는 관절 위로 위치해 있지만 출산 때는 두부가 관절 상구를 가로질러 관절강을 통과해내는 것이 관찰되어 있다. 관절은 안정시에 체조는 적절 위치로 자극하는 데 중요할 뿐만 아니라 분만에도 크게 관여한다고 한다(전형철 등, 1998).

관절은 두 개 또는 그 이상의 뼈로 연결되어 있다. 관절부의 관절골들은 좌, 우 L1-L4 림에 근주, 즉 S1 림의 관절로 이어진 L1 림에, 좌측 척추관절, 칙절절관절이 다. L1-L4 림 관절은 다소 활동적 형태로 해서 체중을 지탱하고 L1과 S1 림 관절로의 동통에서 관절으로의 체중전달을 축소시킨다. 2개의 칙절관절은 각각의 관절 관절로 이어진 관절로 형성되어 있다. 관절은 각 관절 칙골과 척골간의 관절이 연결된 형태의 연결관절들이 관절은 관절부의 간단화되어, 때나하면 지면력 (ground force)이 관절부에 통과 관절부로 전달되기 위해서이다. 감소된 관절의 운동범위는 요추관결 골절을 바빠 수 있다(Susan, 1989).

인체들은 생육절의 비수축성 구조로써 부분적으로 운동을 제한. 관절부의 관절은 정상적인 영향을 유치하는 역할을 한다. 관절부의 중요한 안정장치는 전·후부 칙절 관절. 척추 인두와 척절관절 인두가 있다(Susan, 1989). 전부 칙관절인인 판절의 전면을 지형하고, 반면 후부 칙관절인인 판절의 후면을 지형하고 있다. 전부 인두는 척골, 하면의 관절로부터 가로 질러 있고, 척관절은 골절과 전문에 고착되어 있어 하부 척골로 가르쳐 주고 있다. 두 인두 전·후부 인두는 칙관절과 관절을 위해하고 있다. 전부의 칙관절관절(iliofeomral), 칙관절관절(ischialfeomral), 칙관절관절(pubofemoral) 역시 이 부분에서 중요하게 여겨지는 것들이다(Susan, 1989).

수축조치는 근육, 근-관절경, 전, 후의 뼈 정지부로 이뤄져 있다. 관절은 2개의 근육이 부착하고, 장골에서 함께 움직여진다. 장골에서 특별하게 운동하는 근육은 없다. 그러나 장골과 관절에서는 근육에 기초하고 정치할 수 있고, 글반 관절면에 생긴 힘 그들의 위치로 변한다. 제가가 뒤편 중앙에 있는 근육들은 요추관 관부 평가시 이와 같이 장골에 지지하고 가위를 조여진다. 땅바위의 척골은 장골의 후부 역할을 증가시킬 수 있다. 이중은 골반에 강하게 부착되어 있고만 단방향이나 약간이 있을 경우를 가능성을 증가시키는 데 중요하다. 안정, 대퇴아무근, 땅바위, 땅바위는 관절 운동의 생체학적으로 변형될 수 있다(Susan, 1989).

요추관절(lumbosacral joint)의 최대최치는 관절의 전·후방경계는 요추관절(lumbosacral angle)에 의해서 결정되는데 요추관절은 전부 척추의 상공절부(supior plateaus)를 연결하는 선과 수평면에 의해서 형성되며, 최대의 요추관절은 약 30°이다. 전부가 전방으로 경사지면 이 각이 증가되고 이 각이 증가되면 요추관절의 진행력을 증가시켜서 상관절을 증가시켜야 한다. 요추관 진후방경계는 요추관절의 약간 앞쪽을 통과하게 된다(김윤주 외, 1995).

Ⅲ. 골반의 운동

관절의 가동성은 크게 생리적 운동(physiologic movement)과 생리적 운동(physiologic movement)으로 나눌 수 있다. 생리적 운동은 관절운동(osteokinetic)의 개념인 뿐만 아니라 골반의 운동은 관절운동(arthokinetic)의 개념이다.

IV. 생역학

일반적으로 척추의 위치는 척추위로부터의 힘(trunk force)에 의해 결정되고, 공관절은 뒷방의 운동에 의해 통제되어 진다. 척추의 정상적인 생리학적 운동은 상각에서 척추의 근육과 신경이다. 요부에서 시작하는 공관의 근육은 공관골에서 전방으로 흘러나가며 전방에서는 공관과 함께 체전한다. 이와 유사하게 수평면에서 고관절에서 공관 지후로 유직되는 운동은 발의 중력에 매우 중요하다. 계속 서 있는 사람의 요추는 후반이 되고, 공관은 전반이 된다(Susan, 1989). 정상적인 요추전반의 소실은 공관근(trapezius muscle)의 근육 경직(muscle spasm)을 의미하는 것이다. 부근은 요추의 증가하는 것을 방지하는 근육이기 때문에 이러한 요추전반은 부근의 약화를 나타내는 것이다. 또한 요추전반의 증가는 고관절의 고정된 근육 구축으로 인한 기흉(fixed flexion deformity)이 발생할 수도 있다. 이러한 경우에 하도한 요추전반은 고관절의 신진작용을 대체하게 된다(정진우, 1986).

연장되어서 힘을 공관골에서 운동으로 통제된다. 대부분의 척추간판은 흥미로 일어날 때 작용한다. 이러한 운동은 등부 방향 평행하다. 수직에 공관의 위로 방향을 이끄는 고관절의 결과로 밑부다. 반대의 고관절을 동작시킨다면 척추에서 공관골의 운동은 대체적으로 1.6cm이면, 0.5cm의 양이 차이나 비정상적인 하지 기전, 연장성상의 적응도가 원인일 수도 있다. 비대칭적 변형은 요추 운동부의 연부조직 손상을 극히 심한 변형을 초래한다. 약한 복부 또는 등부의 비대칭적 힘도의 원인이 될 수 있다. 부부의 약화는 공관골 상방으로 이동시키고, 요추전반을 증가시키는 원인이 된다. 후방의 공관절은 무게를 받게 되고, 손상성과 쉽게 된다. 그러므로 요추 공관골의 근력과 근육 간의 균형은 치료적인 문제에 있어서 아주 중요하다(Susan, 1989).

1. 요추 공관골

공관골과 요추의 협조적인 운동은 점차에서 손가락 및 발가락이 같은 척추의 전방공관골 동작에서 확실히

체간의 전방 골반은 척추의 신진근에 의해 약 45되어 통제 될 수 있다. 인대들이 긴장되고 전두면에서의 추관 결나(facet)들이 보다 가까워져서 척추의 안정성과 근육의 자유로운 활동을 하용한다. 일부 모든 척추분절들이 후 종인대들과 추관절들의 작용에 의해 안정화된 가동의 절을 끊어 이치게 되면, 대부분의 하체근육에 의해 골반은 전방으로 회전(골반전방방사)되기 시작한다. 골반은 이 근육들이 완전히 늘어나는 때에 계속 진행으로 회전하게 된다. 체간 전방굴곡의 마지막 가동범위에서는 과관절 신진근들뿐만 아니라 여러 추신진근들과 근막의 신축성에 의해서 조절되어 진다. 다시 허리 파게 되면 골반 전 신진근이 골반을 후방전방방사(골반 후방방사)추신 진근의 작용을 완화하게 돕게 된다. 이러한 요추의 골반의 운동적인 장애는 근육이나 근막의 단축, 상해나 고유수용성 감각상실, 잘못된 습관적인 자세등으로 발생할 수 있다(Kiser & Colby, 1996).

2. 단단한구에서 골반과 과관절의 운동

일상생활에서 클반사슬과 단단한사슬의 운동이 거의 동 시에 일어나고 있으며 특히 바른 자세를 위해 클반사슬의 안정성중기, 근형협동을 위해서는 클반사슬운동보다 단단한사슬운동이 더욱 많이 있는 운동이라 할 수 있다. 단단 사슬운동에서 선자세나 보행의 입자기에 일어나는 클반의 운동으로 가장 많은 운동량을 가지는 곳은 관절구를 놓 수 있다. 관절구와 대퇴골두가 연결되는 과관절은 구조관절로 이루어져 3개의 측이 있어 클반, 신장, 신전, 내전, 내회전, 외회전, 외전등이 일어난다. 관절구는 오목(convex)한 면으로 되어 있어 클반의 활동에 방향과 동일한 방향으로 작용이 일어난다. 클반사슬운동은 클반에서 일어나는 경력적 운동방향과 활동 방향과 과관절의 운동방향이 아래의 표와 같다(Notkin과 Levangie, 1992).
표 1. 단한 사슬에서의 골반과 고관절에서의 운동방향

<table>
<thead>
<tr>
<th>Physiologic motion of pelvis</th>
<th>Sliding Direction</th>
<th>Hip joint motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>anterior tilt</td>
<td>anterior tilt</td>
<td>hip flexion</td>
</tr>
<tr>
<td>Posterior tilt</td>
<td>posterior tilt</td>
<td>hip extension</td>
</tr>
<tr>
<td>pelvic hike</td>
<td>inferior gliding</td>
<td>hip abduction</td>
</tr>
<tr>
<td>pelvic drop</td>
<td>superior gliding</td>
<td>hip adduction</td>
</tr>
<tr>
<td>forward rotation</td>
<td>anterior gliding</td>
<td>medial rotation</td>
</tr>
<tr>
<td>backward rotation</td>
<td>posterior gliding</td>
<td>extenal rotation</td>
</tr>
</tbody>
</table>

3. 자세가 골반검사에 미치는 영향

1) 안정 상태로 서 있을 때

2) 운동시의 근작용

Brugger의 근해도학적 연구에 의하면 척추가 골극할 때(fig 5)는 셀룰러 근방(vertebral muscle)이 강하게 수축하고, 다음으로 근근근(glutei), 그리고 셀룰 이지막으로 슬래그(hamstrings)과 가자미근(soleus

![Figure 2](image1)
![Figure 3](image2)
![Figure 4](image3)

(fig 2) 좌우대칭적 지지(측면) (fig 3) 좌우대칭적지지(후면) (fig 4) 양 다리의 비대칭적인 지지
4. 근작용에 따른 요추만곡 변화

요추만곡(lumbar curvature)은 복근이나 방직주근육 군의 긴장뿐만 아니라 골반에 부착되는 하지근육군 (lower limb muscles)의 긴장 상태에 의해서도 영향을 받는다. 신체의 균형이 전반적으로 악한 사람에서는 근육 이 이완되면 3개의 척추관주, 즉 요부, 허부, 경부의 만곡이 증가된다. 특히 골반이 전방으로 기울어지면 상장골 균과 상하장골극을 연결하는 극간선(interspinous line)은 하전방으로 기운다.

골반에 대해 척추를 골반까지 요추만곡을 증가시키는 요근(P, psoas)는 골반장 상태가 되어 이가자세를 약화시킨다(fig 8). 이와 같은 자세는 에너지나 요지력이 결여된 사람에게서 볼 수 있다. 특히 척추의 변화가 엄청난 후되지도 나타난는데 이것은 척추가 안정 위치에 있어도 도어가 성장함에 따라 복부가 높아지고 몸의 중심이 전방으로 이동하기 때문이다(신문관 등, 1998).

만약의 변화는 골반 수중에서 시작된다(fig 9). 골반 이 전방기조되어 있으면 골반과 신근군이 전방기조를 발 지하려는 쪽으로 작용한다. 슬레관(H)이나 대근관(GM)이 수축하면 골반을 후족으로 당기고, 근간선을 수평으로 회전시킨다. 천골도 수평이 되어 요추만곡을 감소시킨다. 이 과정에서 전방적인 역할을 하는 근육군은 복근군이 있고, 특히 요추만곡의 양면을 연결하는 복근관(R)과 강한 작용을 한다. 그러므로 복근관과 등근의 수축이 있으면 요추만곡을 편평하게하는데 충분하다. 이 지 점 후족에는 방직주근관(S)의 수축에 의해 척추가 신전하면서 상위 요추를 후족으로 당긴다. 흥부만곡은 척추 후부 근육의 근작용에 의해 편평화된다.

만일 어깨에 물건을 올려놓거나 몸의 업에 얇으므로 물건을 들고 자유로이 운반할 때와 같이 상위척추부에 부하가 감소할 때는 꼬리의 전방기조가 약한 신체가 되어 경추만곡은 증가하거나 요추만곡은 감소하게 된다. 이 때 방직주근근군의 긴장이 없어 옆직임을 감소시키려 한다. 따라서 복근군은 안정시에는 척추를 약간으로 지지하지 않고 요추만곡을 외래적으로 편평시키는 작용을 하며, '자세 자세'를 취하거나 척후골극을 동반하는 무거운 물건을 올리고 있는 활동적이다(신문관 등, 1998).

5. 골반기조의 변화를 위한 운동

개개인의 표형 특성, 특히 척추와 전방간극은 부하에 영향을 미친다. 이 전방기조가 크게 클라우드 더 큰 근육의 힘과 밀접부하를 일으킨다. 척추 기판근과 복근강화
동을 하는 동안 척추에 가해지는 부하를 줄입니다. 이런 운동은 스트레칭 운동의 효과적으로 강화시키는 반면 개개인의 허리상태에 따라서 시행해야 한다(Nordin과 Frankel, 1980).

척추기립근은 일도의 누운 자세에서 이동모양을 취함으로 강하게 작용된다. 이와 같은 자세는 척추에 큰 제약을 일으키기 때문에 과심장제는 피해야 한다. 척추기립근에 대한 근력강화 운동은 시행할 때 척추를 더욱 정형하게 배열되는 시각상태가 오히려 좋다. 양쪽 하지가상근은 일반적으로 복근 강화 운동에 사용되지만, 이런 운동은 복근은 발목으로 영향을 미치지 못한다. 대신 요근에 척추 부위가 대부분 작용하고 요추전반을 일으키게 한다. 바로 누운 상태에서 엉덩이 일을으키며 할 때 고관절과 골관절을 구부리면 요근의 활동은 제한되고 복근이 효과적으로 활동 하면 요추전반의 압력을 점차 증가시킨다. 만약 운동 범위가 제한되면요근에 가해지는 부하는 줄어든다. 즉 머리와 어깨를 탁발에서 벗어지고 요추운동은 최소화되는 제한 균형을 통해 운동 제한을 얻을 수 있다. 무릎을 깔끔으로 가져가고 경쟁 이를 탁발에서 올리는 역금형(reverse curl)은 내외 복근과 복근근을 활성화시킨다. 만약 역금형 동작상으로 시행한다면 움직임으로 척추를 하는 동안 생각나는 손가락을 얻지만, 복근 강화에는 효과적인 운동이며으로 골반 경사를 완화시키는데는 효과적이다(Nordin과 Frankel, 1980).

V. 결 론

임상에서 흔히 볼 수 있는 정형의학적 환자나 신경계 질환으로 인한 신경근에서의 문제로 야기되는 자세의 불균형들은 척추에 영향을 주고 있는 환자에게 정형과 의학적 목적은 가능한 정상적으로, 혹은 정상에 가장게 일상생활을 할 수 있도록 해주는 것임은 두 말할 나위 없다. 정상적 인 일상생활을 위해서는 인체의 균형과 안정성이 확보되어야 하고 이에 바탕으로 운동이도 원활히 일어날 수 있어야 한다. 상체의 균형과 다리조직의 핵심이라 할 수 있는 골반은 관리 환자에서도 적극 절차에서 우선시 되고 있다(황병호 등, 1998). Bobath(1990)는 골반을
블렉형해에 가장 효과적으로 영향을 미치는 조절점(key point of control)의 하였고 최근에 회사 많은 신경돌리
치료약자들도 마비판 하리의 보행치료에 있어 물리적, 신
체적 동작을 강조하고 있다(Davies, 1990, Lynch와
Grisogono, 1991). 특히 박아미에서 비대칭적 기립자세와
보험행태의 개선을 위해서 야마구 카운과 하지 사이의
재정립을 위한 물리치료와 보행 치료를 하기 이전에 필
요하다는 것을 아시게된 등, 1996]할 수 있다. 이에 물
리가 중요하며 있어 바른 자세를 유지할 수 있으
며, 또 동일인 자세에서 앞앞의 상태와 하체를 조절하여
일상생활 동작과 보행능력을 증진시킬 수 있음(서영원
인체는 고도로 정밀한 기계라고 할 수 있다(하철수,
1998). 그러므로 인체의 올바른을 기술하고 분석, 평가하
여 보다 과학적인 접근으로 환자의 치료에 적용 할 수 있
도록 역학, 물리학적 영역과의 결합을 통한 연구 발전이
기대된다.

<참고 문헌>

김성수: 요통의 해부학적 고찰, 대한물리치료학회지 제
김성수: 신경 파라미터를 위한 평가가 치료, 영문학
판사, 1996.

"\text{말의사:}" 초주간도에 관한 연구, 서울신진대학교 교육대
배성수, 정현일, 최재원: 교육수용성 신경근 축진물 물리
판사의 생체학적 분석, 대 한물리치료학회지 제11권
제1호, 137-141, 1999.
오성길: 전방성 남자와 요추근간운동중 수술 후 신생
남자의 요추부 갈각근 및 신전 근육 동성력 검사적
가, 대한물리치료학회지, 제10권 1호, 1998.
서영원, 권순석, 신형철: 말유도의 치료방법에
따라 하체능력 및 치료에 관한 연구, 대한
서영원, 배성수, 신형철: 말유도의 치료에 있어서 Bobath
\text{approach}가 물리치료학면에 미치는 영향, 대한

물리치료사학회지 제3권 1호, 1996.
신문구, 권철철, 김현수 등 (역): 임상운동학과 기능적
학을 위한 판절치료학 3권, 현문사, 1998.
황병용, 김성호: 판절의 치료에서 물리학 하지
사이의 재정립 후 촉진 압 변화, 한국 Bobath학회지,
Bergenfeld H, Nilsson B, Uden A et al: Bone mineral
content, gender, body posture and build in ression
Bobath B.: Adult hemiplegia: evaluation & treatment,
Brain E. Ultermann.: Pelvic restraint effect on lumbar
gluteal and hamstring muscle electromyographic
activation, Arch phys med rehabil, vol 80, April
1999.
Caillet, R.: soft tissue pain and disability, 2nd, FA
Carol A. Oatis., Complex of hip: Role of the hip in
Christie HJ, Kumar S, Warren SA.: Postural aberrations
in low back pain, Arch Phys Med Rehabil 76, 218-
224, 1995.
Cooper R.G., Clair Forbes W.S.T., Jayson M.I.V.: Radiographic demonstraion of paraspinal muscles
wasting in patient with chronic low back pain,
David A. Winter, : Biomechanics and motor control of
human movement, 1990
Davies, P.M.,: Right in the middle, Berlin, Springer-
verlag, 1990.
Hansson T, Bigos S, Beecher P et al: The lumbar
loddosis in acute and chronic low back pain, Spine,
Henry W, David B.: Functional anatomy of the limbs
Jackson RP, McManus AC, : Radiographic analysis of sagittal plane alignment and balance in standing
volunteer and patients with low back pain matched
for age, sex, and size, Spine 19, 1611-1618, 1994.
Kapandji, I.A.,: The Physiology of the Joints, 2nd, 1974.
Lynch M, Grisogono V: stroke and head injury,

Nordin, Frankel, Basic biomechanics of the musculoskeletal system, 2nd ed, 1980.

Patricia M. Davies, Starting again, Springer-Verlag, 1994.

Von Lackum H.L: The lumboSacral region, JAMA, 82, 1109-1114, 1924.