The Change of Bone Density by Aerobic Exercise

Park, Rae-Joon, Ph.D., P.T.
Dept. of Physical Therapy, Toegu University
Kang, Gy-Chang, M.S., P.T.
Dept. of Physical Therapy, Milsung Clinic

<Abstract>

The purpose of this study was to investigate the change of bone density by partial weight bearing and non-weight bearing exercise.

Twelve female volunteers in good health (between 20 and 30 years of age) were studied as subjects. Subjects were divided into three groups: an experimental group (n=4 swimming group), group 2 (n=4 bicycle group) and control group (n=4). Before and after 11 weeks (five times a week), the subjects were examined for change of bone density using a dual energy X-ray absorptiometry.

The results were summarized as follows:

1. There was increase in bone density of femoral neck in the group that swam but there was no difference in lumbar, femoral neck and femoral ward's triangle region (P<0.05)
2. There was increase in bone density of femoral ward's triangle in the group that swam but there was no difference in lumbar, femoral neck and femoral ward's triangle region (P<0.05)
3. After a aerobic exercise by partial weight bearing and non-weight bearing, there was no difference in the part of excessive muscle's exercise but there is the increase of the bone density in figures.

I. 서 론

세계보건기구(WHO)에서 일반적으로 골다공증(Osteoporosis)을 골생산량과 골소실 속도의 불균형으로 인한 골소실 속도의 현저한 증가라고 정의 하였다. 여성의 경우 40-50세, 남성의 경우 50-60세에서 골다공증으로 판명되고 있는 이론을 1998년도 대구대학교 연구비 일부지원에 의한 논문임.
인, 백혈병, 폐손상, 호르몬생산중증, 폐손상성인경상적혈구변형, 지중해병변환, 노인성경, 폐경기후증후증, 호흡곤란, 음주자, 환자들이 있다(마장일 1996).

이런 둘다중증의 측정에 있어 1987년대에 알레르기 감기선 측정법을 대체 하여 전세계적으로 DXA(Dual Energy X-Ray Absorptiometry)가 널리 쓰이고 있고, DXA는 방사선이 인체를 투과할 때 투과물질의 방사선 투과율(흡수량)의 차이를 측정함으로써 투과물질의 밀도를 산출하는 방식을 이용한 것이다(Sievanen 등 1996).

측정 부위에 있어서 콩土아공중이 전반적인 골소실을 이상으로 부대별로 금속도가 전체 금속도를 반영한다고 주장하였으나 최근 여러 연구에서 콩土아공중에 의한 골무질 소실은 부위에 따른 차이가 있는 것으로 확인되어 정확한 부대별 금속도를 얻기 위해서는 직접적인 부대별 측정이 필요하다고 하였고 일반적으로 요구하는 금속도 측정값은 20년에서 40년 이상이 요구됩니다.

예를 들어 1번 요구는 높은 골질음률 보이고 능을 중첩되어 오자가 발생할 수 있으며 2번 요구는 다른 요소에 비해 높은 금속도를 보이고 골골본과 함께 오자가 나타나기 때문에 제외되었다고 하였고 그 외에 금속도 측정부위인 어느 부위에서든 가능하다거나 실제로 대퇴부위, 대퇴 Ward's 상각 및 요골의 원위부가 주로 이용된다고(양승오 1996).

Ravn 등(1994)은 1,238명의 백인여성이 DXA를 사용하여 대퇴골의 금속도를 측정한 결과 389명의 예비기전 여성(21~54세)에서 대퇴골 부위와 Ward's 상각 부위에서 0.03%의 골소실을 관찰한 반면, 예비기전 여성(48~75세)에서는 예비기전 시작 후 5년 이내의 9~13%의 골소실이 관찰되었다고 하였으며 이러한 결과로 예비 기전 시작 시점으로부터 10~15년이 가까운 골소실을 보이지만 예비 기전 후 10년이 지난대퇴골의 골소실은 안정상태에 이르다고 하였다.

Riis 등(1996)은 대퇴골의 예비기전 후 금속도 손실을 이 금속도 시험에 미치는 영향에 대한 연구에서 골밀도 손실이 빠르면 금속도의 투과성이 높으며, 최초 측정된 금속도가 높고 골밀도가 빠르면 금속도는 높게 보고하였다.

또한 Melton 등(1985)은 골밀도의 변화와 예비기전의 여성의 골절 발생률에 비슷한 수치이며 미국에서는 골다공중으로 인한 골절의 주위 골밀도의 차이로 보아 동안 약 180여 통을 지불하고 하여 골다공중으로 인한 경계적 손실을 보고하였으며, 골판물 주위 골밀도 1년내 사망률이 20%로 매우 높고 치료후에도 약 25%만이 골절전 상태로 되돌아가기 때문에 관찰 사회문제가 되고 있다고 하였다. 그러므로, 대퇴골밀도의 금속도는 골다공중의 심한 항병증으로 예방이 무엇보다 중요하다. 골밀도는 연령, 골의 기하학적 구조, 남아는 적도와 세기, 유전적 소인, 생활양식, 근력저하와 함께 골절병변, 안지 감소, 평형기능의 장애 등에 영향을 받는다(양승오 1996).

골기질의 감소에 있어서 나이에 따른 골량의 감소는 50대에는 손목부위, 60대로서는 척추 그리고, 70대에는 골관절부위에서 주로 발생한다. 여성은 남성에 비해 약 2배 정도 골다공중에 의한 원인을 높는데 그 이유는 최대 골량이 적고, 예후골소실이 급격히 증가하며, 여성이 남성보다 평균연령이 길 뿐만 아니라 골량의 폭이 넓어 측면으로 넘어질 때 골관절 금속도 일으키기 쉽기 때문이다(양승오 1996).

한편 현대 사회가 고령화 되어가고 모든층에서 운동의 부족현상이 나타나고 있는데 그 입원으로 청소년층에서도 운동부족으로 인한 골밀도의 약화가 진행하게 되어가고 있고 골밀도는 50배 중간에 최고가 되며 그 후 매년 1%씩 감소한다고 하였고 청소년층의 특특, 폐경기의 여성이 동반하여 운동량의 절대부족은 골다공중에 지대한 영향을 미치게 되므로 골다공중의 예방은 골관절기능의 금속도를 높이기 위해서는 운동이 단단히 높은 골밀도를 간과할 수 없는 것이 이에 Joseph 등(1984)은 골다공중은 환자,의 비활동적 생활방식과 관계있는 이들의 관리에 있어 척추의 신경과 척추 강화 운동이 저하될 필요성이라고 강조하여 골다공중 발병에 있어 운동의 영향이 지대하다고 하였다.

우는 효과가 의문시 되고 있다.
따라서 본 연구는 무부하 삽입부하에서의 허사소 운동이 골밀도에 영향을 미칠 수 있다고 전제하고 수영과 고정 자전거 타기를 선택하여 운동이 골밀도에 미치는 영향을 알아보기 위해 실시하였다.

II. 연구대상 및 방법

1. 연구대상

본 연구의 대상은 울산광역시 강남병원에 근무중인 자 중에서 1997년 6월 18일부터 1997년 9월 5일까지 11주간 본 연구에 참여한 만 20~30세의 건강한 여성 12명을 대상으로 실험군1(자전거군) 실험군2(수영군) 대조군으로 나누어 한군에 4명씩 무작위 선택을 하였다 (Table 1). 본 연구대상의 조건은 암바플절이나 부정상 변형, 복부 대동맥의 석회화가 없는 자, 운동장애가 신경근육계 이상으로 없는 자, 다이어트나 약물을 복용하지 않는 자 및 내과적으로 신부인과적으로 문제가 없는 자로 하였다.

Table 1. The general characteristics of subjects

<table>
<thead>
<tr>
<th>Number</th>
<th>Age (yr)</th>
<th>Height (cm)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>23.417±3.714</td>
<td>162.500±3.477</td>
<td>53.583±4.033</td>
</tr>
</tbody>
</table>

Unit : g/cm²

2. 연구방법

1) 운동전 검사
이중에너지 방사선 흡수기(Dual Energy X-ray Absorptiometry)를 이용하여 실험군과 대조군의 요추부위와 대퇴경부와 대퇴 Ward's 상각 부위의 골밀도를 측정하였다 (Table 2).

Table 2. The bone density of subjects

<table>
<thead>
<tr>
<th>Number</th>
<th>L₄~L₅</th>
<th>FN</th>
<th>FW</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1.1358±0.094</td>
<td>0.9240±0.057</td>
<td>0.9068±0.083</td>
</tr>
</tbody>
</table>

Unit : g/cm²
L₄~L₅ : From lumbar second region to lumbar fourth region
FN : Femur neck
FW : Femur Ward's

Figure 1. Region of bone density measurement

2) 운동 방법
1997년 6월 18일부터 1997년 9월 5일까지 주 5회, 11주간 실시하던 실험군 1(수영군) 실험군 2(자전거군) 모두에게 하루 30분씩 최대 산소 소비량의 50%정도의 유산소 운동을 실시하였고 대조군은 일상생활을 유지하도록 하였다.

3) 운동후 검사
실험군과 대조군 모두에게 요추부위와 대퇴경부와 Ward's 상각 부위의 골밀도를 측정하였다.

3. 자료분석
실험성적은 SPSS/PC'를 이용하여 통계처리하였는데 운
동반 운동후의 금밀도의 변화량에 대한 유의성 검증을 위해 t 검정을 실시하였고 유의수준은 $P < 0.05$로 하였다.

III. 결 과

1. 수영그룹의 운동실시전과 운동실시 후의 금밀도의 변화

수영그룹에 있어서의 금밀도의 변화량은 요추부에서 가장 두드러졌다. 운동실시 전의 금밀도는 1. 17.35±0.144 B k/w이고 운동실시 후의 금밀도는 1. 16.85±0.141 B k/w이었다. 대비경 부위에서는 운동전후의 금밀도가 감소하는 경향을 보였다. 운동실시 전의 금밀도가 0.8755±0.027 B k/w이고 운동실시 후의 금밀도가 0.8790±0.041 B k/w로 증가를 보였다. 0.8695±0.106 B k/w으로 감소하는 경향을 보였다 (Table 3, Figure 2).

Table 3. The change of bone density in swimming group

<table>
<thead>
<tr>
<th>Group</th>
<th>Item</th>
<th>L4 ~ L5</th>
<th>FN</th>
<th>FW</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE</td>
<td>1.1735±0.144</td>
<td>0.8755±0.027</td>
<td>0.8715±0.068</td>
<td></td>
</tr>
<tr>
<td>POST</td>
<td>1.1685±0.141</td>
<td>0.8790±0.041</td>
<td>0.8695±0.106</td>
<td></td>
</tr>
</tbody>
</table>

Unit : B k/w
PRE : Pre-exercise
POST: Post-exercise
L2 ~ L4: From lumbar second region to lumbar fourth region
FN : Femur neck
FW : Femur Ward's

2. 자전거 그룹에서의 운동실시전과 운동실시 후의 금밀도의 변화

자전거 그룹에서는 요추부에서 금밀도의 변화는 운동실시 전의 금밀도가 1.1020±0.033 B k/w이었고 운동실시 후의 금밀도는 1.0892±0.042 B k/w로 감소하는 경향을 보였다. 대비경 부위에서도 금밀도의 변화가 감소하는 경향을 보였다. 운동실시 전의 금밀도가 0.9530±0.067 B k/w이었고 운동실시 후의 금밀도가 0.9528±0.070 B k/w으로 감소하는 경향을 보였다. 그러나, 대비 Ward's 삼각부위에서 금밀도의 증가를 볼 수 있었다. 운동실시 전의 금밀도는 0.9478±0.088 B k/w이었고 운동실시 후의 금밀도는 0.9570±0.102 B k/w로 증가하는 경향을 보였다 (Table 4, Figure 3).

Table 4. The change of bone density in bicycle group

<table>
<thead>
<tr>
<th>Group</th>
<th>Item</th>
<th>L4 ~ L5</th>
<th>FN</th>
<th>FW</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE</td>
<td>1.1020±0.033</td>
<td>0.9530±0.067</td>
<td>0.9478±0.088</td>
<td></td>
</tr>
<tr>
<td>POST</td>
<td>1.0892±0.042</td>
<td>0.9528±0.070</td>
<td>0.9570±0.102</td>
<td></td>
</tr>
<tr>
<td>Unit : B k/w</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRE : Pre-exercise</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PST : Post-exercise</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2 ~ L4: From lumbar second region to lumbar fourth region</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FN : Femur neck</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FW : Femur Ward's</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. The change of bone density in swimming group

Figure 3. The change of bone density in bicycle group

L2 ~ L4: From lumbar second region to lumbar fourth region
FN : Femur neck
FW : Femur Ward's
3. 수영그룹과 자전거 그룹에서의 i 결정 결과

수영 그룹에 있어 i 결정 결과를 보면, 요추부의 털밀도에 있어 값이 0.188 (P<0.05)로 유의한 증가가 없고 대퇴경 부위의 털밀도 변화량에 대해서도 0.806 (P<0.05)로 유의성이 있었다. 그리고 대퇴 Ward's 상각부위에서는 0.955 (P<0.05)로 유의성이 없게 나타났다 (Table 5).

Table 5. The paired t-test of bone density between pre & post-exercise in swimming group

<table>
<thead>
<tr>
<th></th>
<th>L2~L4</th>
<th>FN</th>
<th>FW</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-value</td>
<td>1.70</td>
<td>0.27</td>
<td>0.06</td>
</tr>
<tr>
<td>P</td>
<td>0.188</td>
<td>0.806</td>
<td>0.955</td>
</tr>
</tbody>
</table>

L2~L4 : From lumbar second region to lumbar fourth region
FN : Femur neck
FW : Femur Ward's

자전거 그룹에서의 i 결정 결과를 보면 요추부의 털밀도의 변화에 대한 값이 0.246 (P<0.05)로 유의성이 없고 대퇴경 부위에서 도 0.989 (P<0.05)로 유의한 증가가 없었다.

대퇴 Ward's 상각 부위에서도 털밀도의 변화에 대한 값이 0.357 (P<0.05)로 유의성이 없게 나타났다 (Table 6).

Table 6. The paired t-test of bone density between pre & post-exercise in bicycle group

<table>
<thead>
<tr>
<th></th>
<th>L2~L4</th>
<th>FN</th>
<th>FW</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-value</td>
<td>1.44</td>
<td>0.02</td>
<td>1.08</td>
</tr>
<tr>
<td>P</td>
<td>0.246</td>
<td>0.989</td>
<td>0.357</td>
</tr>
</tbody>
</table>

L2~L4 : From lumbar second region to lumbar fourth region
FN : Femur neck
FW : Femur Ward's

IV. 고찰

결론 무기질 요소와 유기질 요소를 이루어며 골의 무기질 요소는 조직을 강하게 하고 건고하게 하는 반면, 유기질 요소는 골을 유연성 있고 탄력성이 있게 하고 골의 무기질 부분은 일차적으로 갈상과 인으로 구성되어, 주로 Ca₉₀(Po₁₄)(OH)₂ 형태의 수산화포시아트 (hydroxyapatite) 결정체를 담은 작은 결정체의 형태이며 골간조 광세포의 65-70%의 비율을 차지하는 이러한 무기질은 골에 연결한 전도를 제공한다. 그리고 골은 신체의 필수 무기질, 특히 갈상의 저장소 역할을 한다 (Margareta Victor 1980).

이러한 무기질의 감소시 골다공증으로 인한 이차적인 골관절부의 골절이 일어나는데 일반적으로 골다공증의 전형은 측면에 골절이 골의 신면 골량의 5분의 2, 5 SD(Standard Deviation)이하로 감소된 경우를 말한다 (양수오 1996). Melton(1985)는 골다공증으로 인한 골관절 주위 골절의 1년내 사망율이 20%이고 치료료에도 약 25% 만이 골절전 상태로 되돌아가기 때문에ether한 사
화중재가 되고 있다 한다. 그리고, 1999년 한국체육 청신계에서의 약 170만명이 골관절 주위 골절로 치료를 받았으며, 50세인 백인 여성이 전성기 동안 골관절 주위 골절의 발생율은 통계적으로 17%라고 하였다 (Kannus등 1996).

골은 부하에 의한 파세력, 요소에 의하여 저체의 크기, 모양과 구조를 바꿀수로서 재활성하는 능력을 가지고 있으며 부하된 역할 정도에 반응하여 골이 골 해면과 골 과절을 얻거나 없는 것을 Wolff의 법칙이라 설명하며, 이는 골이 필요한 영역에 배양하다고 필요하지 않은 영역에서는 흡수하는 가능하다고 한다(Wolff, 1892). 그리
서, 우리여행의 경험이와 많은 가능성적인 부작용 상승의 체중부하중에 있어 골 크기의 감소 경사를 초래한다고 하였다(Rambaut & Johnston, 1979). 골절의 경우 6개월후의 치유는 30-40% 감소한다고 하며 골다공증 환자의 경우 일반적으로 골의 압박 골절과 대퇴부골절이 그리 고 전위 요골의 골절이 많이 발생한다.

이 경우 골절을 하게 되면 빠른 활동이 요구되나 골유실의 체중부하운동은 그들의 활동에 제한되는 운동이며 체중압박골절의 경우 골절은 절증시하고 형성의 용량을 호소하며 자체 변형이 어려울 정도로 운동이 제한이 주어지게 되며 그 등의 골절시에도 골절은 의심되어 야 말 것이다 (Frederick S. Kaplan, M. D. 1987). Riggs 등(1986)은 물소를 이용한 천구군에서 1년의 체중에서
는 7.8%, 대퇴경부에서는 2.6% 그리고 요골에서는 1.4%의 치유율 변화를 보고 하였다. Wahlne와 Riggs (1993)는 골절 예측을 위한 장기 추적감시에서 요골의 치유도가 1단계의 변화를 감소하던 요골의 외상도 추적에서 뱃 17세의 나이 증가와 감소, 대퇴골의 골밀도가 1단계의 변화를 감소하던 대퇴골의 외상도가 13-
14세의 나이 증가와 같다고 보고하였다.

Johnell과 Wedel(1996)은 골밀도가 골다공성 환경을 일
만이나 예방하기 수행할 본문에서 그후의 대표적 이
의의 여러분야에서 첫학한 골밀도는 현장에 맞춘 골밀도
창의학의 T1포문에서 감소 당대 관절염의 가중강도가 1.5배
증가하고, 척추골밀도에 척추질환형성을 예방하는데는 2.3배
(1.9-2.8) 대퇴골밀도가 대퇴골절을 예방하는데는 2.6배(2-
0-3.5)의 골밀도증가량을 보였다고 하였다. 골밀도 측정
기에는 단일영사 방사선 희수계(Single Energy X-ray
Absorptiometry), 이중에너지 방사선 희수계(Dual Energy X-
ray Absorptiometry), 정량 컴퓨터 단층촬영술(Quantitative
computed tomography)이 있다고 하였다(Anass Alavi, M.
D. 1987). 이런 골다공증의 증례에 있어 1987년 현재 앙골
가 감사한 측정법을 대체하여 전세계적으로 DXA(Dual
Energy X-ray Absorptiometry)는 널리 쓰고 있으며 DXA는
방사선의 인체를 투과하여 대퇴골밀도의 방사선 투과율(흡
수량)의 차이를 측정함으로써 투과 물질의 밀도를 산출하
는 방식을 이용한 것이며 저유리와 저에너지(70, 140
kVp)의 방사선을 발생시키는 응용관을 사용하여 동위원
소 또는 증가된 광전차유인(photon flux)을 가능하게 하기
도 하고, 측정시간이 한 부위당 30초~5분으로 단축되었
고, 우수한 정밀도(예측 수량은 0.5-1.5% 대퇴골 : 1-2% 전신 :
전신 : 1% 예측도를 보인다. (Siewers 등 1992).

측정 부위에 있어서 양상도 등(1996)은 골다공증이 전
반적인 골소실을 가하기로 부침해의 골밀도가 전체 골밀
도를 반영한다고 주장하였다. 최근 여러 연구에 따르면 골다
공증에 의한 골소실의 소실은 부위에 따라 차이가 있
는 것으로 확인되어 정확한 부위별 골밀도를 알기 위해
서는 직접적인 부위별 측정이 필요하며 가장 많이 이용
되는 방식은 대퇴경부. 대퇴 Ward's 상각, 요골의 측
부위를 이용한 것이다.

그러나 측정 부위가 골다공증이 여성에게 나타나고 골다
공증에 합병증부하로 진행하는 정도로 미리 보아 예측
로만 짜리가 깊은 원인으로도 차이가 있고 이에 의
한 해면골의 소실이 가장 현저하게 나타나며 합병 후 장
기의 예상로만 제시도에 의해 골밀도 반영 50% 감소시킬수 있었다. John 등(1987)은 골다공증의 예방과 치료를 위해 예상로만 짜리의 활용
을 유의하고 키프로나를 포함하여 약술을 하루 1,500
mg 복용시키고 제당한 비타민 D와 규칙적인 체중부하 활동
을 강조하였다. 성인에게 있어 운동은 근력과 적은 영
향을 미친다.

그러나 성장기안의 운동은 골의 희석과 재형성 및 골

Thomas 등(1996)은 중증도의 운동이 증가한 보
행으로 골밀도증가와 연관이 있는 측면을 보고하였다.

다라인 등(1996)은 제한부하가 골밀도를 유지하는데
가장 효과적인 운동이라 하고 평가적 연구에 주목 3년
간의 운동소운동을 권장하고 있으나 제한된 운동의 경우는
두부형을 일으킬 수 있는 경상경화와 비교에서 골밀도의
감소를 가져 야 한다고 하였다. Dalsky(1996)는 장거리 달
리기와 돌아올리기를 실시한 연구에서 돌아올리기를 실
시한 그룹, 장거리 달리기. 대조군 순으로 골밀도의 변화
가 있었고 저구레 운동의 경우 단독으로 골다공증의 진행
을 산출시키는 것은 없었으나 약간의 감소 경향을 촉발
하는 것이라고 하였다.

이와 같이 골다공증의 경우 운동이 영향을 미치는 것
은 사실이나 종례의 많은 연구가 부재에 의한 적은 반복
의 운동소운동의 경우를 조사한 것이다. 그러나 수영이나
음수주에서 행하는 체중부하를 불가능한 많은 운동에
 있어서는 관절협착운동, 협력, 강화장치, 심혈관
계의 강화를 위해 시행되어 왔다(Sinnki 1989). 그러
고 근력의 유지나 강화, 근력의 유지, 협력의 강화로
이차적인 골밀도의 예방을 위한 식사였으며 골밀도에 미
어는 영향에 대한 연구는 미비하다. 이에 본 연구는 부
분한 무리에 무리에 의한 운동소운동을 실시하였을 때
골밀도에 미치는 영향을 조사해 보았다. Lynn 등(1997)은
골다공증환자의 근형성에 관한 보고에서 조상인에 비
해 골다공증환자에게 근형성체제가 필요하다고 하였다.

Tsui 등(1995)은 점은 운동수행의 이력과 요골의 골
밀도와의 관계에 관한 논문에서 이하추 수많은 운동수행
의 근
력과 골밀도와의 관계를 조사하여 근력과 골밀도와의 비
례하는 결과를 보고하였다.

본 연구에서는 무리에 의한 운동소운동에 대한 영향을
실시하여 그 결과와 수영그룹에 있어서의 골밀도와 변화량
은 대체로 부하에서 운동실시 전의 골밀도가 0.8755±0.027 g/cm^2였고 운동실시 후의 골밀도가 0.8790±0.041
g/cm^2로 운동 전후의 골밀도가 증가하는 경향을 보였다.

저작권에 있어서는 본부처에 의한 운동소운동 및 대
퇴 Ward's 상각부위에서 골밀도의 증가를 볼 수 있었다. 운
동실시 전의 골밀도는 0.9478±0.088 g/cm^2였고 운동실
시 후의 골밀도는 0.9570±0.102 g/cm^2로 증가의 경향을
보였다. Brahman 등(1996)은 채소한 달리기 운동을 장기간
동안 실시한 실험군에서 운동 실시 전과 운동실시 후의 근의 형성에 있어 당일의 경우 증가하였으나 이틀후의 경
우 인식으로 근형성의 억제와 희혈주의 저감이 시작되
는 것을 보고하였다. 본 연구 결과에서도 요추부의 몸길
이는 증가하는 경향을 보였다. 수지에도 불구하고 운동
실시 전의 몸길이는 1.1735±0.144 mm였고 운동실시 후
의 몸길이는 1.1685±0.141 mm이었다.
그러고 자전거군에서도 요추부에 있어서 운동실시 전
의 몸길이는 1.102±0.033 mm이었고 운동실시 후의 몸
길이는 1.0892±0.042 mm로 감소하는 경향을 보였다.
이상과 같이 Tsujii 등(1996)이 주장한 근육과 희혈을 비
례한다는 주장이 다소 일치한다는 것을 알 수 있었다. 그리
고 Bassey (1996)가 주장한 고장도 운동과 저강도의 운
동을 실시하였을 때 그들 모두에서 대퇴부자의 몸길이는
다 34% 증가가 가정되었으나 요추부에 있어서는 변화가 없었
다는 보고와 같이 수지군과 자전거군의 유산소 운동
의 경도에 요추부에서의 영향을 미치지 못하였다.

공급의 유지는 세포부하와 움직임 환경이 필요하며
만약 한가지가 결핍되면 골의 감소가 일어나고 재
생하는 골의 증가에 필수적이어서 세포 부하를 활
발하게 얻은 운동은 세포부하 운동에 비해 효과가 적다는
것은 여러 연구에 의해 증명되었다(Dalsky 1988).
본 연구에서도 유의성이 없었으나 무부하인 수지군보
다는 부분부하인 자전거군에서 몸길도의 수치가 더 높
은것을 알 수 있었다. 본 연구에서는 단기간과 적은 수의
실험군으로 몸길도의 미세한 증가만을 알 수 있었으나
다양한 무부하나 부분부하에 의한 운동과 충분한 운동기간
에 의한 지속적인 연구로 급성기의 골밀도감소나 최초
변화의 영향을 받지 않는 환자인 경우 부하에 의한 강도의
운동을 할 수 없음에 판절범위 운동, 협력, 건강증진, 심리
관련은 강화된 일반 무부하나 부분부하운동을 통해
조직의 골밀도의 감소방지와 향후 재활을 위한 운동으로
그럼에 도움이 될 것이다. 그리고 골밀도증의 팁은
치료를 위해서는 운동뿐만 아니라 반드시 적절한 식이요법
과 약물치료, 세포 교정, 환자 교육 등을 시행하여 골밀도
증의 정도와 혈압증을 감소시키고 고혈압의 희혈의
이환율을 낮추어 골밀도증환자의 진단과 치료 시에
가야 할 것이다.

V. 결 론
본 연구는 운동이 골밀도에 미치는 영향 중에서 무부
하와 부분부하운동이 골밀도에 미치는 영향에 대하여 알
여보았고, 대상은 본 연구에 참여한 만 20세에서 30세
사이의 여성으로 대조군, 실험군1(수지군), 실험군 2(자
전거군)로 정하고 한국에 4명씩 배치하였다. 실험기간
은 하루 30분씩 총 51주일간 실시하였다. 운동실시
전과 운동실시 후의 몸길이를 측정하며 다음과 같은 결
론을 얻었다.

1. 수지군의 운동실시 전과 운동실시 후 대퇴정구에서
골밀도성의 증가를 볼 수 있었다. 그러나, 요추부와 대퇴
정구, 대퇴 Ward's 삼각부위의 운동실시 전과 운동실시
후의 유의한 차이가 있었다 (P<0.05).

2. 자전거군에서의 운동실시 전과 운동실시 후의 대퇴
Ward's 삼각부위의 골밀도성의 증가를 볼 수 있었다. 그러
나, 요추부와 대퇴정구와 대퇴 Ward's 삼각부위의 운동실
시 전과 운동실시 후의 유의한 차이가 있었다 (P<0.05).

3. 부분부하와 무부하에 의한 유산소 운동의 실험시
근육의 운동성은 많은 부하에 있어서 유의성이 없었으나
수지강의 골밀도 증가를 볼 수 있었다.

참고 문헌

Bakchian(1996) : 골밀도증에 의한 요추의 재활치료. 제 3
회 굽는중 심포지움. 12 P131 ~ 143.

양구현(1996) : 골밀도증의 역학 및 골절위험인자. 제 3
회 곽지중 심포지움. 12 P1 ~ 44.

양승오(1996) : DXA 골밀도 측정의 최신지간. 제 3 회
곽지중 심포지움. 12 P26 ~ P35.

Abass Alavi, M. D. (1987) : Metabolic disorder. The ciba
collection of medical illustrations. Vol 8. Section IV
Plate 28.

bone density in young women following high-
impact exercise. Osteoporosis Int 4 : 72-75.

increases with brief daily exercise. Bone 19(1) :
1105.

biomarkers during long term running. Bone 19(1) :
1055.

Dalsky, G.P., Stocke, K.S., Ehans, A.A., Slutzinsky, E.,
exercise training and lumbar bone mineral content

loading. Bone. 19(1) : 1095.

- 104 -