The Gait Analysis of Hemiplegic Patients After Stroke I. Spatio-Temporal Parameters, Pelvic Anterior Tilting and Ground Reaction-Vertical Force

Kwon, Young-Sil, R.P.T.
Major in Physical Therapy, Graduate School of RehabilitationScience, Taegu University
Kim, Jin-Sang, D.V.M., Ph.D.
Dept. of Physical Therapy, College of Rehabilitation, Taegu University

Abstract

This study was carried out to investigate and compare biomechanical characteristics during free speed gait in hemiplegic patients after stroke who took therapeutic exercise by analyzing kinematic and kinetic data in the sagittal plane and electromyographic data. Six patients (47-69 years old) and age-matched six volunteers in good health (51-61 years old) were studied. The patients were sorted into two groups, depending on their self-speed of walking: fast speed group (3 patients) and slow speed group (3 patients).

The results were as follows:

1. In spatio-temporal parameters, affected and unaffected side of fast group showed asymmetry but slow group showed asymmetry of single limb support, opposite foot contact and stance phase (p<0.05). Compared with normal group, patient group showed slower velocity, shorter stride length and longer double limb support (p<0.05).

2. In the pelvic anterior tilt, patient group showed lower values than normal group.

3. In the ground reaction force-vertical force, fast group showed similar double peak graph compared with normal group, but slow group showed lower values without double peak (p<0.05).
I. 서론

보험은 인간의 신경과 근육의 응용, 즉 훌륭한 과정이며, 한 채석지가 임상적인 상황을 유지하는 동안 동식물의 모든 질병을 앞으로 유사하게 하는 연속적이고 반복적인 동작이다(Perry, 1992).

전반한 보험은 이루어지게 되어 미각한 상관과 야비한 상관이 매우 높으며, 그들의 보험은 이루어져야 하고, 꾸며, 임상적 동안 원칙과 지침을 유지해야 하며, 전체, 유가기 동안 유가기적으로 바뀌면서 전반적인 허리를 해야 하고, 마지막으로 신체를 전장으로 유지할 수 있는 충분한 에너지를 공급되어야 한다(Onley, 1996).

일반적으로 보행중을 경험한 전후자의 50~80%가 발병 3주 또는 퇴원 후 보진이 보행할 수 있다고 보기 때문에(Burked, 1988). 보행 재교육은 보행중 환자들에게 있어 중요한 재활 프로그램의 목표 가운데 하나이다. 그 런 보행은 모든 급행이 지속적으로 도전받고 다시 획득 되지만은 고도로 협력된 일련의 동작이라고(Galley, 1985), 정상 대상자와 비교해서 편마비 환자들이 서기, 걷기, 일어나기, 앉기 등의 과정에서 반복적인 비대칭성을 보인다(Hesse 등, 1997).

보험으로 인한 편마비 환자의 비대칭성은 가장 일반적으로 확인되는 동정적 기(Rode 등, 1997)와 편측증과 달리의 단지기 때문에 있어 시간적 비대칭을 나타내며, 비판적 임상가들은 편측의 임상적보다 더 크다(Brandtstar, 1983).

II. 연구 방법

1. 연구 대상

실험목적을 알고 동의한 정상 성인과 어출중으로 인한 편백 환자를 각각 8명씩 대상으로 하였다(Table 1a). 기존 자료를 위한 대조군으로 설정된 정상 성인은 실험 중 편백이나 근예상에 영향을 줄 수 있는 신경과세, 정형외과적 병력이 가지고 있지 않은 51~61세(54.83±3.71)의 여성 4명과 남성 3명으로 하였다.

환자군은 현재 안양 중화병원의 운동 치료실에서 치료중인 47~69세(57±8.77)의 여성 2명과 남성 4명이며, 발병일로부터 1개월~9개월(3.6±2.7)의 시간이 경과하였고, 모두 장기화된 축력의 병력이 가지고 있는 것 뿐만 아니라, 마비증은 왼쪽 3명, 오른쪽 3명이 있다. 대상자는 보조장구나 타인 도움없이 탄반이 된다고 하여 8m 이상 독립부행이 가능하며, 실험자와의 통신을 위해 무리없이 이 실험을 수행할 수 있을 정도로 인지력과 정신상태가 양호하였다(Table 1b).

2. 실험 도구

본 연구는 인천 재활공학연구 센터의 보행분석실에서 이루어졌으며, 인체측측을 위하여 신장계, 체중계, 닥터 칼리프(cooper), 증가가 이용되었다. 10m의 태평전 캐펜트 아레야는 운동력학적 분석을 위한 압력형 힘판 (Piezoelectric Force Plate:600x900, Kistler, Type 9281B) 2개가 대상자가 보이지 않도록 설치되어 있으며, 보직을 고려하여 정상적인 진행방향으로 힘판이 900mm길이로 놓여있고 편백의 경우 600mm 길이로 놓여있게 하였다. 운동학적 분석을 위해 좌, 우, 앞, 뒤, 대각선 방향으로 적외선 카메라(Vicon 1.R, Strobe & Pus, VC300) 6대를 설치하였으며, 부가적으로, TV 화면에 보여져도록 CCD카메라가 양쪽에 따로eworthy Panasonic, CCD, F1) 설치하였다. 모든 실험 장치는 데이터 처리 장치인 데이터 스테이션에 연결하였다(Fig 1).

근도측정을 위해 채용 10개까지의 표면 전극이 이용되었고, 이것은 데이터 처리장치에 우선으로 연결하였다. 적외선 카메라가 인식할 수 있는 25mm 반사마커 15개, 실험조건 설정을 위해 반사마커가 부착된 팔레르미어 노즐 4개와 동작 분석 장치인 Vicon 370 프로그램과 보행 분석을 위한 VCM프로그램이 이용되었다.

3. 실험 절차

1) 실험량 단계

데이터 처리 프로그램인 Vicon 370을 가동시키고, 실험 공간 설정을 위해 사전에 캐리브레이션 노즐을 활성화하여 적외선 카메라 6대 각각의 반사막 인식상태를 정비하였다. 대상자가 도착하면, 마루의 후 수영복으로 갈이입하여 키와 몸무게를 측정하고, 증가로 위험각고사시(Axis)에서 대측부자주(med. malleolus)가지의 거리를 측정하여 각자 진더를 측정하였고, 데이터증가라는 의미로 무게, 몸무게와 발목변화는 측정하였다. 그 후 25mm 반사마커를 부착하였는데, 운동학적 분석으로는 VCM 모델(Oxford Metrics)이 마련되었다. 마커의 위치는 대상자의 척골(Sacrum), 좌, 우 발달고사시(Axis), 좌측 대퇴부, 좌측 무릎의 외측, 좌측 경골부, 좌측 발목 외측부, 좌측 발목 내측부, 어지 및 좌측 발목골 뒷쪽에 부착하였다.

2) 머리의 위치

- 골반 마커 좌, 우 발달고사시, 두 마커는 앞발골 사이가 바로 위에 위치하였다.
- 전부 마커: 두 위치감파기상, 이 가운데 좌측과 우측을 포착한 후 발달고사시 사이가 바로 위에 위치하였다.
- 무릎 마커: 좌, 우 무릎 외측부, 무릎 마커는 피부를 통과하는 골절 속 위치에 부착하며, 무릎을 전후 회전시키는 동작을 위해서 크리스탈의 면을 사용하여, 무릎과 근육의 위치를 기록하였다. 무릎까지 위치를 기록하여, 무릎의 회전을 측정하였고, 근육과 골절의 위치를 비교한 후에, 이론상의 위치와 실제 위치의 차이를 계산하였다.

- 머리 마커는 후방의 골절 속 위치에 부착하는 동작을 위해서, 무릎 관절의 위치를 기록하였다. 무릎 관절의 위치는 근육과 골절의 위치를 기록하고, 근육과 골절의 위치를 비교한 후에, 이론상의 위치와 실제 위치의 차이를 계산하였다.
Table 1a. Characteristics of Subjects.

<table>
<thead>
<tr>
<th>Group Variable</th>
<th>Normal (n=6) Mean(SD)</th>
<th>Patient Fast (n=3)</th>
<th>(Slow n=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age(yrs)</td>
<td>54.83(3.71)</td>
<td>55.33(10.01)</td>
<td>58.66(11.06)</td>
</tr>
<tr>
<td>Gender(F/M)</td>
<td>4 / 2</td>
<td>1 / 2</td>
<td>1 / 2</td>
</tr>
<tr>
<td>Height(cm)</td>
<td>157.26(10.76)</td>
<td>157.20(4.90)</td>
<td>156.00(7.54)</td>
</tr>
<tr>
<td>Weight(kg)</td>
<td>62.92(9.54)</td>
<td>56.56(2.28)</td>
<td>53.70(4.59)</td>
</tr>
<tr>
<td>Leg length(cm)</td>
<td></td>
<td>81.18(4.92)</td>
<td>81.20(4.51)</td>
</tr>
<tr>
<td>Lt</td>
<td>80.95(5.14)</td>
<td>80.03(4.71)</td>
<td>81.86(2.02)</td>
</tr>
</tbody>
</table>

Lt : left
Rt : right

Table 1b. Characteristics of Patients.

<table>
<thead>
<tr>
<th>No</th>
<th>Age(yrs)</th>
<th>Gender</th>
<th>Aff,side</th>
<th>Duration</th>
<th>Speed</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>47</td>
<td>M</td>
<td>Rt</td>
<td>9M</td>
<td>Slow</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>56</td>
<td>F</td>
<td>Lt</td>
<td>5M</td>
<td>Fast</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>45</td>
<td>M</td>
<td>Rt</td>
<td>2M</td>
<td>Fast</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>65</td>
<td>M</td>
<td>Rt</td>
<td>1M</td>
<td>Fast</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>69</td>
<td>M</td>
<td>Lt</td>
<td>2.5M</td>
<td>Slow</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>60</td>
<td>F</td>
<td>Lt</td>
<td>2.5M</td>
<td>Slow</td>
<td></td>
</tr>
</tbody>
</table>

M : male, F : female

Fig 1. Laboratory Setting
● 대퇴 마커 : 좌, 우 대퇴마리.
 이 마커는 대퇴 표면 외측의 아래 농지점, 유각기시 손
 의위치 바로 밑이며, 무릎 굽힘과 정확한 경점을 이루
 는 위치이다.
● 발목 마커 : 좌, 우 발목 판절.
 발목 굽힘의 동작을 파악하는 팔부 표면의 부착해야 한
 데, 대부분 발목 외측부(Ant. malleolus)부위였다.
● 하 ebp 마커 : 좌, 우 하 ebp.
 발목 굽힘의 정렬에서 하 ebp 무아내부의 부위를 위치시
 켰다. 이 마커는 무릎관절과 발목관절 중심을연결한 선
 상에 위치하였다.
● 발 마커 : 좌, 우 발 돌.
 발목에서 보통 두 번째 발바닥의 머리(bone head)에 부착 시켰다.
● 위꿈치 마커 : 좌, 우 발꿈치 위쪽.
 발목과 연결된 신이 장축을 이루도록 발꿈치에 부
 착하였고, 정격자세에서만 부착한 후 보행 시에는 떨어
 넣고 겪었다.
 근전도 표면적극은 큰 눈근근(Gluteus maximus), 내측
 무릎 관절 급정 근육근(Mod. Hamstrings), 외측 눈근근
 (Vastus lateralis), 하 ebp 가타근근(Tibialis anterior)의 근육에 부착시키고 태이터 처리소와 한
 케이블로 연결시켰다. 실험 전 정지 상태에서 실험실 가운데
 대상자를 적절히 선에서 위치 한 후 시스템을 작동시
 켜 인체에 부착된 반사시계들을 컴퓨터에 입력시켜서 각
 관절의 중심과 변속들이 정의될 수 있도록 하였다.

3) 실험 자료 수집
 대상자가 실험실에서 각종 기기를 몸에 부착하였고 부
 자선은 보행을 하기 위해므로 실험실에서 충분한 보
 행 연습을 시킨 다음, 평상시의 자연상태로 보행이 되었
 는 실험을 시작하였다. 환자의 경우 주의를 기울여 피
 로를 느끼지 않는 범위 내에서 실시하였다. 장상인의 경
 우 8-9m, 환자의 경우 4-5m의 보행로에서 자유 속도 보
 행을 실시하였다. 대상자는 정면을 향하게 머리를 들고
 려파일 차례로 상자로 자연스럽게 홀들면서 걷도록 하였
 다. 오른쪽이나 왼쪽 또한 환자나 비환자에 관계없이
 구두의 출발속도에 따라 맞을 내밀도록 하였으며, 대
 상자에게는 보이지 않는 가운데 힘판에 반이 하나씩 닿
 으면 성공적인 시도로 보고 3회 이상 성공적 시도의 평균
 을 내어 각 대상자의 자료값을 얻었다.
 대상자가 보행으로 건는 동안 최외전 카메라의 신체에
 부착되어 있는 마커의 위치를 감지하고 컴퓨터에서는 신체
 하부에 의한 지연 반영기를 실시간으로 처리하였으며, 신체에 부착시간 근전도 자료도 유선을 통해 컴퓨터로 전달되었다. 모든 데이터는 시간적으로 일정화되어
 Vicon 370에 입력되었다.

4) 자료 처리
 보행분석 프로그램인 VCM으로 모든 자료들이 보내
 진 후 보행주기에 따라 다음과 같은 보행 변수들의 값이

![Fig 2. Terminology for gait cycle](image)
구해졌다.
(1) 보행의 시간-거리 변수
분당 발주수(cadence), 속도(speed), 보폭(stripe length), 발斛시각(step time), 발斛길이(step length) 등이 구해졌으며, 보행 주기는 단단히 저지기(single support), 양하지지기(double support), 반대발 메기(opposite foot off), 반대발 접지(opposite foot contact), 발매기(foot off)로 나누었다(Fig. 2).
(2) 운동학적 분석
시상면 자료만 분석하였고, 결반 경사를 구하였다.
(3) 운동역학적 분석
지면 반발력에서는 수직력만을 구하였다.
모든 개개인의 값들은 최, 우측으로 구별하여 얻은 다음, 한자리의 경우는 느린 군과 빠른 군으로 나누어서 각 군에서 다시 환착과의 비환착의 값을 평균내었다. 정상인의 경우 온전한 원쪽이 경골 비슷하기 때문에 양쪽값을 평균내어 기준 자료로 삼았다. 느린 군과 빠른 군에서
환착값과 비환착값, 정상군값과 비환착값이 student t-test에 의해 통계적으로 유의한 차이를 보였다.

Ⅲ. 연구 결과

1. 시간-거리 변수
정상군, 왜머리 빠른 군의 환착과 비환착, 왜머리 느린
군의 환착과 비환착에 대한 시간과 거리 변수 분석 결과
는 Table 2와 같다. 정상군의 분당 발주수는 115 steps/min 이었고, 빠른 군의 환착과 비환착의 분당 발주수는 각각 107.33±10.59 steps/min과 104.33±11.5 steps/min이었으며, 느린 군의 환착과 비환착의 분당 발주수는 각각 72.15±18.67 steps/min과 73.33±17.38 steps/min이었다.
속도의 경우 정상군은 1.14m/sec였으나 빠른 군의 환
착과 비환착의 속도는 0.74±0.14, 0.74±0.15m/sec이었고, 비환착의 속도값은 정상군과 통계적으로 유의한 차
 이를 보였다(P<0.05). 느린 군의 환착과 비환착의 속도는 각각 0.29±0.09 m/sec, 0.30±0.08 m/sec이었고, 이 비환착값도 정상군과 유의한 차이를 보였다(P<0.01).
보폭의 경우 정상군은 1.18m였으나, 빠른 군의 환착
과 비환착의 보폭은 각각 0.83±0.13 m, 0.85±0.13m였고 비환착값은 정상군과 유의한 차이를 보였다(P<0.05).
느린 군의 환착과 비환착의 보폭은 각각 0.48±0.04 m, 0.50±0.02m였고, 이 비환착값은 정상군과 비교하여 통계적으로 유의한 차이를 보였다(P<0.01).
발斛 시간의 경우 정상군은 0.52 sec이었고, 빠른 군의
환착과 비환착의 발斛시간은 각각 0.57±0.08 sec, 0.56±0.05 sec이었으며, 느린 군의 환착과 비환착의 발斛시간은 각각 0.90±0.16 sec, 0.80±0.20 sec이었다.
발斛 갱이의 경우 정상군은 0.6m였으나, 빠른 군의
환착과 비환착의 발斛길이는 각각 0.4±0.05 m, 0.44±0.07m였고, 느린 군의 환착과 비환착의 발斛길이는 각각 0.26±0.07 m, 0.22±0.03 m였는데 비환착의 발斛길이
값은 정상군과 비교하여 통계적으로 유의한 차이를 보였다(P<0.05).
보행 주기 중 단단히 저지기는 정상군의 경우 35.06 %였으며, 빠른 군의 환착과 비환착의 단단히 저지기는 각각 31.67±1.40 %, 31.40±1.49 %였고, 비환착의 단단히
저지기는 정상군과 통계적으로 유의한 차이를 보였다(P<0.05). 느린 군의 환착과 비환착의 단단히 저지기는 각각 17.93±3.63 %, 32.98±5.99 %이었으며 통계적으
로 유의한 차이를 보았다(P<0.05).
보행 주기 중 양하지기 지지기는 정상군의 경우 29.87 %였으나, 빠른 군의 환착과 비환착의 양하지기 지지기는 각각 31.10±1.27 %, 36.35±1.07 %로써, 비환착의 양하지기
지지값은 정상군과 통계적으로 유의한 차이를 보였다(P<0.01). 느린 군의 환착과 비환착의 양하지기 지지
기압은 각각 49.51±2.0 %, 48.48±3.99 %로써, 비환착의
양하지기 지지값은 정상군과 통계적으로 유의한 차이를 보였다(P<0.01).
보행 주기 중 반대발 메기는 정상군의 경우 14.92 %였으며, 빠른 군의 환착과 비교하여 반대발 메기는 각각 17.40±1.2 %, 18.90±2.10 %로써, 느린 군의 환착과 비환착
의 반대발 메기는 각각 29.21±4.10, 20.28±4.23 %였다.
보행 주기 중 반대발 접지기는 정상군의 경우 49.99 %였으며, 빠른 군의 환착과 비교하여 반대발 접지기는 각각 49.00±2.60 %, 50.31±1.50 %로써, 느린 군의 환착과 비
환착의 반대발 접지기는 각각 47.15±1.85 %, 53.26±2.
00 %로써, 비환착의 반대발 접지값은 정상군과 비교하여 유의한 차이를 보였다(P<0.05).
보행 주기 중 반대발은 정상군의 경우 64.94 %였으나, 빠른 군의 환착과 비환착은 각각 67.79±1.59, 67.76±1.
91 %로써, 느린 군의 환착과 비교하여 각각 67.44±5.05, 81.
47±2.39로써, 시도간에도 유의한 차이를 보였고(P<0.05), 비환착값도 정상군과 비교하여 유의한 차이를 보였다.
<table>
<thead>
<tr>
<th>Variables</th>
<th>Mean(SD)</th>
<th>Aff</th>
<th>Unaff</th>
<th>Aff</th>
<th>Unaff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadence</td>
<td>115</td>
<td>107.33</td>
<td>104.33</td>
<td>72</td>
<td>73.33</td>
</tr>
<tr>
<td>(steps/min)</td>
<td>(10.59)</td>
<td>(11.59)</td>
<td>(15.87)</td>
<td>(17.38)</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>1.14</td>
<td>0.74</td>
<td>0.74*</td>
<td>0.29</td>
<td>0.30**</td>
</tr>
<tr>
<td>(m/s)</td>
<td>(0.14)</td>
<td>(0.15)</td>
<td>(0.09)</td>
<td>(0.08)</td>
<td></td>
</tr>
<tr>
<td>Stride length</td>
<td>1.18</td>
<td>0.83</td>
<td>0.85*</td>
<td>0.48</td>
<td>0.50**</td>
</tr>
<tr>
<td>(m)</td>
<td>(0.13)</td>
<td>(0.13)</td>
<td>(0.04)</td>
<td>(0.02)</td>
<td></td>
</tr>
<tr>
<td>Step time</td>
<td>0.52</td>
<td>0.57</td>
<td>0.56</td>
<td>0.90</td>
<td>0.80</td>
</tr>
<tr>
<td>(s)</td>
<td>(0.08)</td>
<td>(0.05)</td>
<td>(0.16)</td>
<td>(0.20)</td>
<td></td>
</tr>
<tr>
<td>Step length</td>
<td>0.60</td>
<td>0.40</td>
<td>0.44</td>
<td>0.26</td>
<td>0.22**</td>
</tr>
<tr>
<td>(m)</td>
<td>(0.05)</td>
<td>(0.07)</td>
<td>(0.07)</td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>Single support</td>
<td>35.06</td>
<td>31.67</td>
<td>31.40*</td>
<td>17.93*</td>
<td>32.98</td>
</tr>
<tr>
<td>(% cycle)</td>
<td>(1.40)</td>
<td>(1.49)</td>
<td>(3.63)</td>
<td>(5.99)</td>
<td></td>
</tr>
<tr>
<td>Double support</td>
<td>29.87</td>
<td>31.10</td>
<td>36.35**</td>
<td>49.51</td>
<td>48.48*</td>
</tr>
<tr>
<td>(% cycle)</td>
<td>(1.27)</td>
<td>(1.07)</td>
<td>(2.08)</td>
<td>(3.99)</td>
<td></td>
</tr>
<tr>
<td>Opp foot off</td>
<td>14.92</td>
<td>17.40</td>
<td>18.90</td>
<td>29.21</td>
<td>20.28</td>
</tr>
<tr>
<td>(% cycle)</td>
<td>(1.26)</td>
<td>(2.10)</td>
<td>(4.10)</td>
<td>(4.23)</td>
<td></td>
</tr>
<tr>
<td>Opp foot contact</td>
<td>49.99</td>
<td>49.00</td>
<td>50.31</td>
<td>47.15*</td>
<td>53.26</td>
</tr>
<tr>
<td>(% cycle)</td>
<td>(2.60)</td>
<td>(1.50)</td>
<td>(1.85)</td>
<td>(2.00)</td>
<td></td>
</tr>
<tr>
<td>Foot off</td>
<td>64.94</td>
<td>67.79</td>
<td>67.76</td>
<td>67.44*</td>
<td>81.47**</td>
</tr>
<tr>
<td>(% cycle)</td>
<td>(1.59)</td>
<td>(1.91)</td>
<td>(5.05)</td>
<td>(2.39)</td>
<td></td>
</tr>
</tbody>
</table>

1: t-test between Aff and Unaff
2: t-test between Unaff and Normal
* : p < 0.05, ** : p < 0.01

그러므로 뽀른 군에서는 환족과 비환족의 입각기가 서로 대칭적인 반면, 느린 군에서는 환족과 비환족의 입각기가 환족의 입각기보다 더 길어서 비대칭적인 패턴을 보였다.

2. 골반 경사각 분석

정상군, 뽀른비뽀른 군의 환족과 비환족 및 뽀른비뽀른 느린 군의 환족과 비환족에 있어 보행시 평균 골반 경사각은 Table 3과 같이 보행 주기에 따른 경사각의 값은 Fig. 3과 같다. 보행시 평균 골반 경사각은 정상군의 경우 10.107±0.42°였으나, 뽀른 군의 환족과 비환족의 평균 골반 경사각은 각각 5.42±0.43°, 5.211±0.95°로써, 비환족의 평균 골반 경사각 값이 정상군과 비교하여 통계적으로 유의한 차이를 보였고(p<0.01), 느린 군의 환족과 비환족의 평균 골반 경사각은 각각 3.229±1.49, 3.312±1.35°로써, 비환족의 평균 골반 경사각 값이 정상군과 비교하여 통계적으로 유의한 차이를 보였다(p<0.01). 그래프 모양을 보면, 정상군에서 초기 입각기시 내려갔다가 중간 입각기시 다시 올라가고 말기 입각기시 다시 내려오다가 유과기에 다시 올라가는 완만한 경사를 보였다뽀른 군의 환족과 비환족의 평균 골반경사각 값은 낮았으나 비슷한 특징을 나타낸 반면, 느린 군의 환족의 평균 골반경사각은 입각기 말기로 갑수록 낮은 전방 경사를 나타내는 패턴을 보였고, 비환족은 입각기로 갑수록 낮아지는 패턴을 보였다.

3. 지면 반발력-수축력

대상자의 보행시 지면 반발력 결과는 Table 4, Fig.4와 같다. 정상군의 보행시 수축 방향의 지면 반발력 평균값은 301.641±266.85 Newtons 이었으나, 뽀른 군의 환족과 비환족의 지면반발력은 각각 260.292±227.54 Newtons, 271.189±232.03 Newtons 이었다. 그러나 느린 군의 환족과 비환족의 지면반발력은 각각 182.147±180.95 Newtons, 295.132±195.51 Newtons로서 통계적으로
Table 3. Pelvic Anterior Tilting of Normal and Hemiplegic Patients.

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Fast</th>
<th>Slow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean(SD)</td>
<td>Afft1</td>
<td>Unafft2</td>
</tr>
<tr>
<td>Pelvic tilt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(degree)</td>
<td>10.107</td>
<td>5.42</td>
<td>5.211**</td>
</tr>
<tr>
<td></td>
<td>(0.42)</td>
<td>(0.43)</td>
<td>(0.95)</td>
</tr>
</tbody>
</table>

t1: t-test between Aff and Unaff
\(t2: t\text{-test between Unaff and Normal}\)
\(*: p < 0.05, **: p < 0.01\)

Table 4. Ground Reaction Force - Vertical force.

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Fast</th>
<th>Slow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean(SD)</td>
<td>Afft1</td>
<td>Unafft2</td>
</tr>
<tr>
<td>Vertical</td>
<td>301.641</td>
<td>260.292</td>
<td>271.189</td>
</tr>
<tr>
<td>Force</td>
<td>(266.85)</td>
<td>(227.54)</td>
<td>(232.03)</td>
</tr>
</tbody>
</table>

t1: t-test between Aff and Unaff
\(t2: t\text{-test between Unaff and Normal}\)
\(*: p < 0.05, **: p < 0.01\)

Fig 3. Pelvic tilting of slow and fast groups in patients.

유의한 차이를 보였다고(p<0.01). 그래프 모양은 빠른 군의 경우 경사각과 유사하게 이중 정점을 나타내고 있었으나, 느린 군의 그래프 모양은 좌측과 비좌측 모두 진행적으로 느린 패턴을 나타냈으며 좌측의 경우가 더 심하고 그 값도 낮았다.

IV. 고 참

뇌출혈의 병리생리학적 연구 중 많은 실험들이 채택에 의해 침범받아서 주로 편측상으로 중추신경계의 운동 세포나 전도로 손상을 당하는 것으로서 예측되지는 않았다. 이런 환자들이 보행을 수행하는데 있어 가장 어려운 문제는 정상적인 양반행의 수의 근육을 성장할 능력이 부족하다는 것과 적절한 타이밍과 근활동 강도를 맞추 수 없다는 것이다(Olney와 Richards, 1996). 뇌

출혈 환자에서 호흡신경 촉매를 방해하는 요인은 추동근과 급행근이 같이 작용하여 힘의 상쇄되는 혈력수축(contraction), 근육을 이겨내기 위해 지속적으로 약하다.
Fig 4. Ground reaction force-vertical force of slow and fast groups in patients

나는 동정성 수축(isometric contraction), 감작식려운 운동직으로 인한 에너지 소모 등을 줄 수 있다(Winter, 1979).

이들 환자의 비정상 보행을 이해하기 위해서는 평가하려고 하는 환자의 보행에 대한 표준을 제공해 주는 정상
보행과 관련 연구가 필요하다(김명호 외, 1996). 보행 변
수들은 성, 연령 및 다양한 신체적 조건에 따라 다르므로
본 연구는 대상으로한 판매인 환자의 연령이 57±8.77세
이므로 유사한 연령군의 54.83±3.74세는 정상 대상으
로 하였다. 보행방식은 시간과 거리 변수들은 발각길이,
보폭, 분당발바닥수, 보행주기곡과 보행 속도가 해당되며,
이들은 간단히 측정 가능하고 유용한 정보를 제공해
된다. 발각길이나 입각기와 유각기 비율을 비교함으로써
치지대칭성에 대한 정보를 얻을 수 있고, 입각기와 유각
기의 길이를 측정함으로써 안정성에 대한 정보를
얻으며, 분당 발바닥수와 보행주기율을 측정함으로써 기능에
관한 정보를 얻을 수 있다(Rose 등, 1991).

본 연구에서는 정상인의 보행변수를 정리하였는데 분당발바
수는 115 steps/min 이었고, 속도는 1.14 m/sec 이었으며,
단각 지지기는 35.06 % cycle, 양각 지지기는 20 % cycle로써 30대 성인의 경우의 분당발바닥수 112 steps/ min, 속도 1.26 m/sec, 단각 지지기 43 % cycle, 양각 지지기 21 % cycle, 음악결과(김명호 등, 1996)가
있으나 일반적으로 보고되는 단각 지지기 40 % cycle, 양각 지지기 20 % cycle(Perry, 1992)의 결과와는 차이
가 있으며, 또한 입각기 비율에 있어서도 24.7세를 대
상으로 한 응용종(1992)의 연구결과인 57.8% cycle과
일반적으로 보고되는 60% cycle(Perry, 1992)의 차이
가 있는 64.94% cycle였다. 즉, 연령이 높은 정상 대조군
에서 단각 지지기가 줄어들고 양각 지지기가 증가하
며 입각기와 늘어나는 양상을 보였다. 환자군의 보행
변수들은 일반적으로 분당발바닥수는 82.97 steps/min
(Hill 등, 1994)라는 보고와 63.8±26.2 steps/min
(Bohannon, 1987)라는 보고가 있었는데 본 연구에서는
빠른 군의 분당과 비분당의 분당발바닥수는 각각 107.33±
10.59 steps/min, 104.33±11.59 steps/min인것으로, 느린 군
의 분당과 비분당의 분당발바닥수는 각각 72.15±18.75 steps/
min, 73.33±17.38 steps/min으로 나타났다.

보행속도에 있어서도 0.23±0.11m/s(Burkett 등,
1988), 0.38±0.25m/s(Bohannon, 1987) Olney 등(1991)은
빠른 군 64±0.8m/s, 느린군 41±0.8m/s, 느린 군 25±0.5m/s의 보고가 있었는데, 본 연구에서는 느린 군 0.
74±0.15m/s와 느린 군 0.29±0.09m/s·0.30±0.08m/s들을
해당하여 다른 연구보다 속도가 좀 더 빨랐다.

단각 지지기의 경우 Hill 등(1994)은 환자에 24.91%
cycle, 비분당이 37.03% cycle이라고 보고하였는데, 본
연구에서는 느린 군의 분당과 비분당의 단각 지지기
가 각각 31.67±1.40% cycle, 31.40±1.49% cycle이었고,
느린 군의 분당과 비분당의 단각 지지기는 17.93±3.63%
cycle, 32.98±5.99% cycle으로서 느린 군은 분양과 비분당

- 135 -
이 차이가 없는 반면 느린 군에서는 비활성 단단히 지지기 가 더 긴어지게 되어 비대칭성을 나타내었다. 이에 따라 지지기도 Roth 등(1997)은 52±17% cycle이라고 보고하였다.

본 연구에서는 맑은 군의 활성 비 활성의 양이 지지지기의 각각 31.10±2.7% cycle, 36.35±1.07% cycle이었으며, 느린 군의 활성 및 비활성의 양이 지지지기의 각각 49.51±2.00% cycle, 48.48±3.99% cycle로 나타났 다.

다른 군에서는 다른 연구에 비해 더 높은 양이 지지지기로 나타났다.

임각기 비활성을 살펴보면 Roth 등(1997)은 활성과 74±8% 비활성과 82±8%이라고 하였으나 본 연구에서는 느린 군의 활성 및 비활성의 임각기 비활성은 각각 67.79±1.59%, 67.79±1.91%이었다. 느린 군의 활성 및 비활성의 임각기 비활성은 각각 67.44±5.05%, 81.47±2.39%로써 느린 군의 경우는 비활성의 임각기가 더 길다는 다른 연구결과와 유사하게 나타났다. 이렇게 활성의 임각기가 더 길어지는 것은 임각비 활성의 전형적인 비대칭성을 나타낸다고 사료된다.

세로로 같은 대상자 연구한 본 연구에서는 한도가 높은 군이 대칭성이라는 연구결과를 올렸는데, 보수작용에 의한 보행의 속도향상보다는 대칭성 향상에 의한 보행의 속도향상을 재설의 목표가 되어야 할 것이라 사료된다.

고 보고하였는데, 본 연구에서는 화장품의 보행 전 주기 에 걸쳐 후방 경사를 나타내지는 않았지만 전방 경사를 각도는 정상군보다 유의하게 낮았다. 특히 느린 군의 경우 활성에서는 발기 임각기와 초기 유작기가 초기 임각기나 발기 유작기가 보다 더 높은 전방경사각도를 보였고, 비활성에서는 발기 임각기에서 가장 낮은 전방경사를 보였다.

V. 결론

본 연구는 유사 연령의 정상 성인 6명과 여러주로 인한 임상적 화장품 6명을 대상으로 운동학-운동력학 프리즘 시스템을 이용한 보행 분석을 관찰하고자 수행되었다.

화장품은 후방 경사각도에 따라 빠른 군과 느린 군의 관계에 노화되었으며, 보행 주기의 한 시간-거리 변수, 골반경 사각 및 지면반발적 수직력에 대한 정상군, 활성 및 비활성의 값을 구하여서 다음과 같은 결론을 얻었다.

1. 시간-거리 변수에 있어서 빠른 군의 화장품이 서로 대칭적었으나, 느린 군은 단단히 지지기, 반대 발 접지기 및 임각기가 비대칭적이라는(p<0.05), 정상군과 비교하여 화장품은 속도가 느리고, 보폭이 좁으며, 양자지지기의 차이가 더 컸다(p<0.05).

2. 골반경사각은 화장품이 정상군보다 더 높은 골반전방경사각도를 나타냈다(p<0.01).

3. 지면반발적 수직력은 느린 군은 정상군과 비교하여 유의한 이중 정점을 나타내었으나, 느린 군의 활성은 낮은 값으로 이중 정점이 없는 곡선을 나타냈다(p<0.05).

참고 문헌

문연호, 문정호, 박성수 (1999). 보행과 보행체계학에 관한 연구. 대한 클리로마크리학회, 제18권 제1호, 49-64.

characteristics in young and old subjects. Phys Ther 74(7): 637-646.

