한국인 주의결핍 과정행동장애와 Dopamine Beta Hydroxylase 유전자 관련성: 가족기반 연구 및 환자-대조군 연구

A FAMILY-BASED AND CASE-CONTROL ASSOCIATION STUDY OF THE DOPAMINE BETA HYDROXYLASE GENE POLYMORPHISM IN ATTENTION DEFICIT HYPERACTIVITY DISORDER

박태원1,2 박태원 acknowledges funding support from the National Institute of Mental Health. He received support from the National Institute of Mental Health, grant 1K01MH082093. He has no other disclosures. He is an employee of a company providing consulting services to the pharmaceutical industry. He is a consultant for a company developing a novel treatment for ADHD. He is a member of the advisory board of a company developing a novel treatment for depression. He has received honoraria for speaking at conferences sponsored by pharmaceutical companies. He has received grants from the National Institutes of Health, grant R01MH089464. He has received grants from the National Institutes of Health, grant R01MH089464.

이 논문은 2003년도 전북대학교 정신과 치료 연구에 의하여 연구되었음.
1. 전북대학교 의과대학 정신과학교실 Department of Psychiatry, College of Medicine, Chonbuk National University, Jeonju
2. 서울대학교 의과대학 정신과학교실 Division of Child & Adolescent Psychiatry, Department of Psychiatry, College of Medicine, Seoul National University, Seoul
3. 부천대학교 의과대학 정신과학교실 Department of Psychiatry, College of Medicine, Dankook University, Cheonan
4. 경상대학교 의과대학 정신과학교실 Department of Psychiatry, College of Medicine, Gyeongsang National University, Jinju
5. 서울대학교 의과대학 예방의학교실 Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul
6. 교신저자: 박태원, 561-712 전북 전주시 덕진구 김양동 634-18 전북대학교 의과대학 정신과학교실 전화: (063) 250-2028 전송: (063) 275-3157 E-mail: ptaweon@chonbuk.ac.kr

결론

주의결핍 과정행동장애(Attention Deficit Hyperactivity Disorder)는 소아청소년 정신과 내원 환자 중 가장 많은 비중을 차지하는 질환이다. DSM-IV 전단체계를 기준으로 7세 이전에 시작된 부주의, 충동성, 과정 행동 등을 근거로 진단하는데, 주의력, 실행 기능, 조직적인 사고능력의 결손과 행동을 조절하는 능력의 결함에 따라 학업능력 저하와 많은 행동 문제를 동반한다. 학령기 아동의 약 3~5%에서 이 질환을 가지고 있으며, 일반적으로 여자보다 남자에서 약 3~5배 정도 많이 발생한다고 알려져 있다. 국내 초등학생을 대상으로 시행했던 한 연구에서는 4~5%의 유병률을 보고했다. 주의결핍 과정행동장애의 원인에 대해 구체적으로 알려진 바는 적지만, 일반적으로 환경적 요인이나 상대적 요인보다는 기질적 원인에 크게 작용한다고 알려져 있다. 일반 인구에 비해 환자군에서는 상대적으로 높은 주의결핍 과정행동장애 가족력을 보이고 있다. 쌍생아 연구에서 나타난 주의결핍 과정행동장애의 평균 유전성(heritability)은

1 - 54 -

Tae Won Park, M.D.,1,2 Boong Nyun Kim, M.D.,2 Myung-Heo Im, M.D.,3 Hee Jeong Yoo, M.D.,4 Daehye Kang, M.D.,5 Soo Churl Cho, M.D.2

목적: 이 연구는 최근 주목을 받고 있는 dopamine beta hydroxylase 유전자와의 연관성 및 주의결핍 과정행동장애에 발병과 관련된 유전자들의 유전학적 요인이 있는지 알아보기 위한 연구이다.

방법: 주의결핍 과정행동장애 아동 106명을 환자군으로 선정하고, 환자군과 상병, 연령별로 빈도학적 차이가 일반 아동 212명을 대조군으로 하는 환자-대조군 연구를 실시했다. 아울러 환자군과 대조군의 반응을 대상으로 가족기반 연구를 병행했다.

결과: 환자-대조군 연구에서는 환자군과 대조군 간의 유전적적이나 대상유전자 분포에 있어 유의한 차이를 발견하지 못했다. 그러나 가족기반 연구에서는 대상유전자 A1의 신호 전달이 관찰되었다.

결론: 이론 연구를 통해 주의결핍 과정행동장애와 dopamine beta hydroxylase 유전자의 연관성에 대한 추가적인 연구가 필요하다.
대략 0.75~0.80 정도인데, 최근에는 0.85~0.95로 이전보다 높게 보고되는 편이다.10
본 연구에 참가한 분들 중 일부는 주의력결핍 과잉행동장애의 유전적 요인에 대한 연구도 활발하게 진행되고 있다. 그 중 가장 활발하게 진행되고 있는 분야는 도파민에 초점을 맞춘 연구이다. 도파민 수용체(dopamine transporter : DAT)는 신경 시냅스 내에서 도파민 재흡수를 담당하는 단백질인데, 도파민 수용체를 코딩하는 유전자를 제거한 마우스(dopamine transporter gene knock mouse : DAT-KO mice)나 앵코올로 도파민계를 파괴한 쥐 등에서는 주의력 결핍 과잉행동장애와 유사한 인지 및 행동장애가 보였다는 연구가 있다. 주의력결핍 과잉행동장애 환자의 고 부하 표정 연구에서도 도파민계 신경망의 정상을 유지하기 위해 구조적/기능적 이상이 비교적 일관되게 보고되고 있다.11
도파민계 후보유전자(candidate gene)로는 도파민 생성호소인 tyrosine hydroxylase(TH)와 dopa decarboxylase (DD), 5가지 유형의 도파민 수용체(dopamine receptor : D1, D2, D3, D4). 도파민 분해효소인 monoamine oxidase(MAO) 와 catechol-O-methyltransferase(COMT), 시냅스 내 도파민 재흡수 운반을 담당하는 도파민 수용체(DAT), 시냅스 내 도파민 분비에 작용하는 synaptosomal associated protein of 25kDa(SNAP-25), 도파민에서 노르아드레날린으로 전환되는 과정을 담당하는 효소인 dopamine-β-hydroxylase(DBH) 등에 대한 유전자가 있으며 각각에 대해서는 다양한 형태의 유전 연구가 진행 중에 있다.
Dopamine beta hydroxylase(DBH)는 도파민을 노르에피네프린으로 대사시키는 과정에 작용하는 효소이다. 기존 연구에서는 감소된 체액의 DBH 농도가 정신분열병, 정신병적 우울증, 환경적 등과 같은 다양한 정신과 정신의 발달과 관련된 것으로 추정하고 있다.12,13 DBH 유전자는 염색체 9q34에 위치하며 ABO 혈액형 유전자와 연관되어(Linked) 있는 것으로 알려져 있다.
DBH 유전자의 여러 다형성 중에서, Taq I 품종에 의한 질환부위 다형성은 아직 그 구체적 기능이 알려져 있지 않다. Comings 등12,13에 의하면 주의력결핍 과잉행동장애와 DBH 유전자의 Taq I 품종 질환부위의 다양성이 높게 보이고 있는데, Taq I 절편형은 대립유전자(대립유전자 B1)가 주의력결핍 과잉행동장애에 발생과 관련된다고 보고하였다. 그러나 Comings 등12,13의 연구는 그 대상자 수도 적었고, 두장 징후를 동반한 주의력결핍 과잉행동장애에 대한 조사가 이루어지지 않아, 주의력결핍 과잉행동장애에 환자만을 대상으로 했던 이후의 연구들이 많은 차이가 있다. Comings 등의 연구 이후, 여러 연구에서는 Taq I 절편부위 다형성이 주의력결핍 과잉행동장애에 발생에 관여한다고 보고했다.15,19 이러한 연구들의 대부분은 가족기반 연구(family based study)였고, Smith 등18의 연구만이 환자-대조군 연구였다. 이번 연구는 최근 주의력결핍 과잉행동장애에 관련성이 제기되고 있는 DBH 유전자의 Taq I 절편부위 다형성이 한국인 주의력결핍 과잉행동장애 환자군과 대조군에서 어떤 분포로 보이는지를 살펴보며, 성과 연령의 영향을 보정한 환자-대조군 연구에서 DBH 유전자의 Taq I 다형성이 주의력결핍 과잉행동장애 발생에 관여하는지와 그 관련성 정도를 추정하고, 아울러 각각의 대립유전자와 환자의 가족 내에서 어떻게 전달되는지를 알아보기 위한 것이다.

연구대상 및 방법

1. 연구대상

1) 환자군 선정

서울과 지방 소재의 대학병원(서울대학교병원, 경상대학교병원, 한국대학교병원, 전북대학교병원) 소아 정신과 외래를 방문한 주의력결핍 과잉행동장애 소아청소년을 대상으로 하여 다음과 같은 선정과정을 시행했다.

(1) 검사도구

① 코너스 부모용 평가 척도(Conners Rating Scale for Parents)

② 한국판 아동 행동 조사표(Korean Child Behavior Checklist : 이하 K-CBCL) : 부모 평정을 통해 아동의 문제 행동과 사회적응능력을 포괄적으로 평가하는 척도로 총 113 개의 문제 행동 거기에 각각 척도로 평정하도록 되어 있다. 오경자 등20에 의해 표준화된 K-CBCL을 사용하였다.

③ 한국판 헤슬러 아동지능검사(Korean Educational Development Institute-Wechsler Intelligence Scale for Children : KEDI-WISC)

④ 주의력행동 전반시험(Attention-deficit Diagnostic System : ADS) : 홍영의 등21에 개발한 한국판 연속수행 검사(Continuous Performance Test : CPT)이다. 연속수행검사는 주의력의 영역 중에서 특히 주의 지속성, 경계 유지(vigilance), 주의상실성, 선택적 주의력(selective attention)을 평가하는 도구로서, 누락 오류(commission error), 오 경보 오류(commission error), 정상응시시간(response time)
정분응시간 표준편차(standard deviation of response time) 등 모두 4 가지 기본 요인으로 구성되는데, ADS 4개 기본 요인 중 하나라도 표준편차의 T-점수가 70점(2배의 표준편차 점수) 이상인 경우에는 주의력결핍 과정행동장애의 이상으로 간주할 수 있다. 본 연구에 참가한 대학생은 모두 ADS version 1.0을 이용해 평가를 시행했다.

(2) 선정과정
소아청소년과 전문의에 의해 DSM-IV 진단체계에 따라 주의력결핍 과정행동장애로 진단받은 7~14세 아동을 일차적 대상으로 선정했다. 코너스 부모용 평가도, 한국판 아동 행동평가조언표 등의 부모용 자가보고 설문지를 이용하여 신체적 특성을 확인했으며, K-SADS-PL-K를 통해 주의력결핍 과정행동장애를 진단했다.

(3) 재료기준
ADS 검사 상 누락 오류, 오점 오류, 정반응시간, 정반응 시간표준편차 등 4개의 범주 중 이상소견(2배의 표준편차 : T 점수 70점 이상)이 하나라도 관찰되지 않은 경우, KEDI-WISC 검사 상 지능 지수 70 이상인 경우, 현병력 및 과거력에서 저체중이 주요 내과적/신경과적 질환이 있는 경우, 생물학적인 부모가 없는 경우는 연구 대상에서 제외하였다.

2) 부모관절
주의력결핍 과정행동장애 아동의 생물학적 부모를 대상으로 선정했다.

3) 대조군 선정
대조군은 서울 시내 초등학교 한 곳과 전주 시내 초등학교 한 곳의 학생 480명을 대상으로 하여 다음과 같은 선별검사와 기준을 통해 서울 지역 300명, 전주지역 150명 등 450명을 일차적으로 선정했다.

(1) 부모 설문 조사 및 답답치료와의 전화 상담
주요 내과적/신경과적/정신과적 과거 병력을 평가하기 위해 부모를 대상으로 자제 적절한 설문 조사를 실시했다. 답답치료와의 전화 상담이 가능했던 경우에는 아동이 지속적이고 심각한 행동문제 보였는지를 조사했다.

(2) 코너스 부모용 단층정형도
코너스 부모용 평가 척도를 설계하기 목적으로 사용하기 위해 총동성-파워관리 요인으로 구성된 10개 문항으로 측정한 것으로 총동성-파워관리 요인에 대해 3점 척도로 평정할 수 있도록 구성되었다. 미국의 주의력결핍 과정행동장애 연구에서는 총 점수 15점을 주의력결핍 과정행동장애의 선정기준으로 삼고 있다. 국내에서 수집된 자료에 의하면 초등학교 추천수준에서 평균의 표준편차의 두 배를 가한 수치는 16점으로 전체 남아의 5.7%, 여아의 2.7%에서 이에 해당되었다.

(3) 아동 자가검사
Sattler 등에 의해 제시했던 평가방법을 사용했다. KEDI-WISC 자성평가의 하위 검사 중 토팩하게 여ضعف로 저등 지능을 추정하는 방법으로, 언어성 검사에서는 이해문제가, 동작성 검사에서는 토팩하게 소견검사가 전체 지능 지수와 상관이 가장 높은 것으로 알려져 있다.

(4) 저체성 기준
코너스 부모용 단층정형도가 총점이 16점 이상인 경우, 저등평가가 70 이하인 경우, 부모 설문 조사를 통해 주요 내과적/신경과적 질환이 있는 경우, 답답치료에 의해 지속적이고 심각한 문제 행동이 있다고 보고되었을 경우 등은 연구 대상에서 제외하였다.

4) 적용대상 선정
상기 과정을 거쳐 총적으로 106명의 환자가 선정되었다. 450명의 초등학생 중에서 희망군, 대조군 성별, 연령대별 1:2 류대학급을 통해 212명의 대조군을 선정했다. 환자군의 생물학적 부모 184명이 부모군으로 선정되었다. 본 연구의 목적과 방법에 대해 전반적인 설문을 시행했고, 이에 대해 서면 동의를 했던 경우에만 연구 대상에 포함시켰다.

2. 유전적 분석

1) 혈액 표본 및 유전자 분석
대상 환자군과 부모, 정상 대조군을 대상으로 전주 정맥에서 2~4ml의 맷적 혈액을 EDTA tube에 채취한 후 -20°C에 보관 보관했다. 이를 녹인 후, Generation Capture Plate Kit(Gentra, Minneapolis, USA)를 사용하여 제조사의 프
로토론에 따라 유전자를 분석하였다.

2) DBH 유전자 분석

DBH 유전자의 TaqI 효소 절단부위 다양성 위치를 증폭시키기 위하여 사용된 시험체(primer)의 순서는 다음과 같다(5).
forward: 5’-CGT TAT TGG GAA CTT GGC ATC 3’
reverse: 5’TAT CAT TTT ACT ACC CAG AGG 3’

종합효소연쇄반응(PCR)을 이용하여 유전자 검점을 증폭했다. 유전자 검체(20-30ng), 시험체 0.25pmol, 1X PCR buffer(Takara, Otsu, Japan), dNTP 200M, rTaq 1.25U 등 MJ research PTC-200 thermal cycler(MJ research, Waltham, USA)에 넣고 반응시켰다. 94℃에서 3분간 denaturation시간 후, 94℃에서 1분, 62℃에서 1분, 72℃에서 1분, 72℃에서 5분간 extension 시간을 과정을 32주기 동안 반복했다.

PCR로 증폭된 생물체(464bp거리)는 TaqI 효소로 이용해 절단했으며 2% agarose gel에서 전기영동 했으며 Ethidium bromide 용액에 염색된 후 자와전투기(UVI transilluminator)로 반응을 확인했다(Fig. 1). TaqI 효소와의 why 병합되지 않는 band(464 bp기장에 해당)가 나타난 경우에는 대형 유전자 A1로 해석했고, 분배 된 두 개의 band(300 bp기장과 164 bp기장에 해당)가 나타난 경우를 대형 유전자 A2로 해석했다(Fig. 1). 대상군에 대한 정보를 전에 알지 못하는 두 명의 다중가족 RFLP 결과 사용을 별도로 확인하여 유전자형을 판별한 다음 결과를 서로 비교했는데, 두 평가간 일치율은 모두 95% 이상이었다.

3. 통계분석

1) 환자-대조군 연구 분석

환자군과 대조군의 대형 유전자 변도 비교는 Chi-square test와 unconditional logistic regression analysis를 사용했다. logistic regression analysis는 상병, 연령별 보장으로 통해 결과를 산출했다. 모든 통계적 처리는 SPSS for Windows version 11.0 프로그램을 이용했다.

2) 기존기반 연구 분석

기존기반 연구의 유전자형 및 대형유전자 변도분석으로는 transmission disequilibrium test(TDT)과 haplotype-based haplotype relative risk test(HHRR)을 사용했다. 기존기반 연구에서 TDT 분석법이나 HHRR 분석법은 인구계 증후를 고려한 통계분석방법으로서 TDT가 특정 대형유전자가 부모로부터 환자에게 전달되는 경우의 수와 전달되지 않는 경우의 수를 산출해서 McNemar χ² test을 이용해 분석하는 방법인데 반해(7), HHRR는 일종의 가족 내 환자-대조군 형태 분석방법으로 환자와 부모 대조군의 haplotype을 각각 고려하여 유전된 경우의 수를 세는 방식이다(8). TDT 와 HHRR 방법은 서로 장단점을 지니고 있는데(9-11), TDT 분석방법은 HHRR과 달리 인구계층화를 통해 쉽게 배제할 수 있다는 장점이 있으나, TDT로는 불가능한 비교위험도의 산출이 HHRR 방법으로 가능하다는 단점이 있다. TDT 분석법은 McNemar’s test, HHRR 분석에서는 Chi-square test를 사용했다.

연구결과

1. 대상군 특성

환자군은 서울 소재 대학병원 51명과 지방 소재 대학병원 55명으로 구성되었다. 환자군과 대조군의 연령은 각각 9.77±1.7 years, 9.82±1.6 years로 유의한 차이는 없었다. 남녀 성비에서는 93:13으로 남자가 많았다. 환자군의 지능수준은 97.5±14.2였으며 지능평가가 가능했던 대조군의 지능수준은 100.5±12.7로서 양군 간 유의한 차이는 판별되지 않았다 (P>0.05).

환자군의 한국판 아동 행동 조사표 총점은 64.3±6.8이었으며, 코너스 부모용 평가도 총점은 59±11.8이었다.
환자-부모 대상군은 78tripا와 28pair로 구성되었는데, pare인 경우는 세 성을 제외하고는 모두 환자어머니 쌍으로 구성되었다.

2. 환자군과 대조군의 DBH 유전자 Taq I 다형성의 분석

106명의 환자군을 대상으로 유전자 분석을 실시하여 97명(91.5%)의 환자군에서 분석 결과를 얻을 수 있었다. 마찬가지로 212명의 대조군 중 211명(95.5%)에서 분석 결과를 얻을 수 있었다. 환자군 97명과 대조군 211명의 유전적
자체형은 A1A1형(31.4% : 4.7%), A1A2형(29.9% : 28.4%), A2A2형(67.0% : 66.8%) 등 모두 세 가지로 양극 사이에 유의한 차이가 없었으며, 대립유전자와의 빈도는 A1이 각각 18.0%와 19.0%, A2가 82.0%와 81.0%이었는데 마찬가지로 유의한 차이가 없었다(Table 1).

Table 1. Comparison of genotype and allele frequencies of Taq I restriction polymorphism of dopamine beta hydroxylase gene between cases and controls

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Cases(n=97)</th>
<th>Controls(n=211)</th>
<th>OR(95% CI)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1/A1</td>
<td>3</td>
<td>3.1</td>
<td>4.7</td>
</tr>
<tr>
<td>A1/A2</td>
<td>29</td>
<td>29.9</td>
<td>60</td>
</tr>
<tr>
<td>A2/A2</td>
<td>65</td>
<td>67.0</td>
<td>141</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allele</th>
<th>Cases</th>
<th>Controls</th>
<th>OR(95% CI)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>35</td>
<td>18.0</td>
<td>80</td>
</tr>
<tr>
<td>A2</td>
<td>159</td>
<td>82.0</td>
<td>142</td>
</tr>
</tbody>
</table>

OR means odds ratio, CI means confidence interval. *: OR and 95% CI were estimated by a unconditional logistic regression model. Adjustment for sex and age was done.

Table 2. Transmission disequilibrium test of Taq I restriction polymorphism of dopamine beta hydroxylase gene

<table>
<thead>
<tr>
<th></th>
<th>Not transmitted</th>
<th>Transmitted</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1</td>
<td>A2</td>
<td></td>
</tr>
<tr>
<td>Transmitted</td>
<td>3</td>
<td>11</td>
<td>24</td>
</tr>
<tr>
<td>Not transmitted</td>
<td>25</td>
<td>98</td>
<td>123</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>123</td>
<td>137</td>
</tr>
</tbody>
</table>

Comparisons were conducted using McNemar test (x^2=5.44, df=1, P=0.02).

Table 3. Haplotype-based haplotype relative risk test of Taq I restriction polymorphism of dopamine beta hydroxylase gene

<table>
<thead>
<tr>
<th></th>
<th>Transmitted</th>
<th>Not transmitted</th>
<th>Total(%</th>
<th>RR(95% CI)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>A1</td>
<td>28</td>
<td>20.6</td>
<td>14</td>
<td>9.6</td>
</tr>
<tr>
<td>A2</td>
<td>109</td>
<td>79.4</td>
<td>123</td>
<td>90.4</td>
</tr>
<tr>
<td>Total</td>
<td>137</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Comparisons were conducted using Chi square test (x^2=5.51, df=1, P=0.02), *: RR means relative risk, CI means confidence interval.

Table 4. Comparison of studies on attention deficit hyperactivity disorder and Taq I restriction polymorphism of dopamine beta hydroxylase gene

<table>
<thead>
<tr>
<th>Authors</th>
<th>Findings</th>
<th>Associate allele</th>
<th>Sample size</th>
<th>Age group</th>
<th>Diagnosis criteria</th>
<th>Diagnosis assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wigg et al., 2002</td>
<td>Negative TDT</td>
<td>None</td>
<td>117</td>
<td>7-16years</td>
<td>DSM-IV</td>
<td>Semistructured interview scales</td>
</tr>
<tr>
<td>Kerley et al., 2002</td>
<td>Positive HHR and TDT</td>
<td>Allele 2</td>
<td>118</td>
<td>4-14years</td>
<td>DSM-IV</td>
<td>Clinical information and rating scales</td>
</tr>
<tr>
<td>Roman et al., 2002</td>
<td>Positive HRR</td>
<td>Allele 2</td>
<td>88</td>
<td>4-17years</td>
<td>DSM-IV</td>
<td>Semistructured interview scale (K-SADS-E) and rating scales</td>
</tr>
<tr>
<td>Smith et al., 2003</td>
<td>Positive case-control</td>
<td>Allele 1</td>
<td>105</td>
<td>4-12years</td>
<td>DSM-IV</td>
<td>Clinical information, DSM-IV, semistructured interview scale (K-SADS-PL)</td>
</tr>
<tr>
<td>Our study, 2004</td>
<td>Negative HHR and TDT, negative case-control</td>
<td>Allele 1</td>
<td>97</td>
<td>7-14years</td>
<td>DSM-IV</td>
<td>Semistructured interview scales</td>
</tr>
</tbody>
</table>

3. 환자군과 보부군의 DBH 유전자 Taq I 다형성의 분석

환자와 보부군이 모두 동일한 유전자형 인 경우는 분석에서 제외하였다. 최종적으로 분석이 가능한 환자·보부군 68 트리와 1 pair를 대상으로 TDT 분석과 HHRR 분석을 시행하였다. 그 결과 TDT 분석(Table 2)과 HHRR 분석(Table 3) 모두 대립유전자 A2로 비해 대립유전자 A1의 선택 전달이 관찰되었다(TDT: x^2=5.44, df=1, P=0.02 : HHRR: x^2=5.51, df=1, P=0.02).

고 족

Dopamine beta hydroxylase (DBH)는 도파민을 노르에 파괴하므로 대사시키는 과정에서 중요한 효소이다. 채택의 낮은 DBH 높도는 정신질환, 정신병성 증상증, 행방불구와 같은 다양한 정신과 질환과 관련된다는 결과들이 보고되었다. 두(12) 주의력결핍 과잉행동장애가 도파민과 노르에파민이 높은 세포로 전달되는 결과 DBH가 우수증이나 행방불구 등과 같은 주의력결핍 과잉행동장애와 주로 동반되는 정신질환들과 관련된다는 이전 보고도 검증하기에 이 효소의 유전자와 주의력결핍 과잉행동에 발생에 관련한 것이라고 추정할 수 있을 것이다.

본 연구에서 나타난 대립유전자 A1과 A2의 분포는 기존 연구와는 많은 차이가 있다. 주로 Caucasian을 대상으로 시행되었던 이전 연구에서는 대립유전자 A2의 빈도가 대략 60% 정도로 서로 비슷하게 나타났다. (13,18,19) 브라질 국민 대상으로 했던 또 다른 연구에서도 이와 비슷한 빈도를 보였다. 반면, 이전 연구의 대립유전자 A2 빈도는 환자군과 대조군 모두 80% 이상으로 기존 연구들보다 크게 나타났다.

이번 연구의 환자-대조군 연구에서는 유전자가나 대립유전자 모두 DBH 유전자의 Taq I 절단부위 다형성과 주의력결핍 과잉행동장애 사이에 유의한 관계성이 보이지 않았다.
이와 달리 가족기반 연구에서는 TDT 분석과 HHRR 분석 모두에서 대립유전자 A1의 선택 전달(preferential transmission)이 관찰되었다.

이번 연구에서 특기할 만한 점은 화자-대조군 연구 결과와 가족기반 연구 결과가 서로 다르다는 것이다. 화자-대조군 연구에서는 화자군과 대조군 간에 대립유전자 분포에 있어 유의한 차이를 보이지 않았지만 가족기반 연구에서는 특정 대립유전자 선택 전달이 관찰되었다. 본 연구에서자와 대립환자-대조군 연구와 가족기반 연구가 서로 다른 결과를 보인 경우에는 다음과 같은 가능성을 고려해 볼 수 있을 것이다. 우선, 연구개체수(population stratification)가 화자-대조군 연구에 영향을 끼친 가능성이다. 그러나 한국인의 비교적 동일한 인종적, 민족적 배경을 가진다고 할 때, 그 영향은 그리 크지 않으리라 여겨진다. 아울러 이번 연구에서 화자군과 대조군의 유전자형 분포는 Hardy-Weinberg 동식에 따른 예상과 유의한 차이를 보이지 않았다(화자군: P=0.90; 대조군: P=0.29). 두 번째 고려 사항은 대상자 수가 너무 적었다는 점이다. 대상자 수의 부족은 가족기반 연구에서 더욱 두드러졌고, DBH 유전자의 Taq 1 돌연 mut을 다형성 xuân자 대립유전자 증후 2가지인 경우에는 화자군과 대조치군이 유전자형이 모두 일치하게 되는 경우가 많아 이 점에 대해 전달설에 대한 아무런 정보를 주지 못하기 때문에 분석에서 제외할 수밖에 없고 결과적으로 대조사군이 연장하게 증가하는 결과를 낳게 되는 것이다. 세 번째, 전체 대립유전자 분포 중에서 대립유전자 A1의 변도가 전체 대상의 20% 미만으로 이전 연구에 비해 상대적으로 적었다는 사실도 고려해야 할 것이다. 네 번째, 가족기반 연구에서 화자-대조군을 포함한 각 연구 대상자 개체를 수가 다양했다는 점이다. 이전 연구에서는 분석에 포함된 화자-대조군 68명 중에서 68명이 trior이었으며 pair는 한 쌍에 불과했다. 다섯 번째 고려할 사항은 대조군과 부모군이 서로 동일한 집단이 아닐 수 있다는 점인데, 대조군과 부모군 사이에 DBH 유전자 분포에 있어 유의한 차이를 발견할 수 없었다(각 P>0.05). 마지막으로 유전자와 테이트의 대립유전자 연구가 방범에서 많은 장점이 지나처리이고 있으며, 유전적 요인에 의한 영향을 미치는 화자 유전적 요인이 평가하기 위해서 대조군 연구가 필요하다[30], 따라서 이번 연구에서 화자-대조군 연구와 가족기반 연구가 서로 다른 결과를 보였다는 점은 유전적 요인이 이에에도 많은 영향을 발휘한다는 것이 전망의 가설을 지지하고 있는 것이다.

본 연구에서 나타난 결과는 다음과 같다. 주의력결핍 과잉행동장애가 7세 이전에 발병하며 나이가 어려보이나 3-5세 정도 늦은 유병률을 보인다는 점은 감안할 때 성과 연령에 의한 변호직격기를 통해 어느 정도 이를 보완할 수 있으나, 젊기 이기의 다른 변인들(사회경제적 수준, 부모의 교육 수준 등)을 통제하지 못했던 제한점을 인정하고 있다. 대조군을 어떻게 선정한 것인지가 문제가 있는데, 이번 화자-대조군 연구에서 고려할 수 있었던 대조군 항목은 병원대조군과 지역 대조군이었다. 일반적으로 병원대조군은 쉽게 총합한 대상군 선택이 가능하고 협장에 의한 비밀임을 줄일 수 있으며 화자군과 비슷한 선택 비대치율이 적용한다는 등의 장점이 있지만, 겪었는 사례로 대상으로 하는 것이 아니고 병원 방법과 관련된 사례를 선택하므로 대조군이 유수하는 점과 위험 요인 노출에 차이가 있을 수 있는 등의 단점이 있는 것으로 알려져 있다[33]. 본 연구에서는 화자의 건강 상태가 주의 집중력에 영향을 줄 수 있다는 점을 감안하여[34] 중대한 신체 질환이 있는 경우에는 미리 화자군에서 제외하고, 동시에 지역사회와 비교적 건강한 아동들을 대조군으로 하여 연구를 진행했다. 지역사회 화자군이 서울과 지방으로 크게 들려 나뉘어 분포하고 있는 점을 감안해 대조군을 서울지역과 전주지역의 초등학교 한 군데로 선택하였다. 병원대조군은 대상에 지역대조군 방식을 적용했을 경우에는 화자군과 대조군의 선택 비대치율이 서로 다르게 작용한다는 단점이 있다. 부모군은 78명(전체 화자-부모군의 73.6%)의 trio와 28명(전체 화자-부모군의 26.4%)의 pair로 구성되었다. 부모 전체에서 pair가 차지하는 비율이 높은 편이기 때문에 상대적으로 부모군 숫자가 부족하여 가족기반 연구의 통계적 검정력(statistical power)을 영향으로 한다고 할 만한 요인이 되었다. 또한, 화자군, 대조군, 부모군 모두에서 유전자 분석이
실패한 시례가 발생했는데 그 빈도는 각각 8.5%, 0.5%, 2.5%였다. 비례감을 줄이기 위해 환자군과 부모군이 동일한 유전자형을 보이는 경우는 분석에서 제외하기 때문에 유전자 분석이 가능했던 68 trio와 1 pair(전체 환자의 65.1%)에서만 결과 산출이 가능했고 이러한 이유로 통계적 검정력을 떨어뜨리는 요인이 되었다.

최근 주의력결핍 과잉행동장애 아형(subtype)이나 동반질환(comorbidity)에 따라 분류하거나, 약물유전체 연구,의 영상 연구 등을 도입하여 비교적 동일한 표현형을 가진 집단으로 구분하여 비교분석하는 연구가 활발히 시도되고 있다. 이변 연구에서처럼 환자-대조군 연구와 가족기반 연구가 서로 다른 경우에는 동일한 표현형으로 구분하여 비교하는 것이 중요하다. 그러나 이변 연구에서 환자군 아형이나 동반질환의 영향에 따라 분류하기에는 대상 수가 너무 적었고 이러한 대상수의 부족은 가족기반 연구에서 보다 두드러지게 나타나고 있다. 따라서 향후 보다 많은 대상수를 확보하여 비교적 동일한 표현형에 따라 비교분석하는 연구가 필요할 것이다.

결 론

이번 연구를 통해 DBH 유전자의 Taq I 절단부위의 다양성을 한국인 주의력결핍 과잉행동장애 발병에 영향을 미칠 수 있다는 일련의 추측을 찾을 수 있었다. 그러나 기존 연구들과 이번 연구가 연구 방법이나 결과 면에서 많은 차이가 있으며 이번 연구 내에서도 연구 형태에 따라 상이한 결과를 보다는 점을 감안할 때 DBH 유전자와의 Taq I 절단부위 다양성이 주의력결핍 과잉행동장애 발병에 미치는 영향이 아주 복잡하고 다양할 것이라는 점을 시사한다. 따라서 향후 추가적인 대상수를 확대하여 보면 정교하고 확대된 연구를 시행하여 이러한 사실을 확인해야 할 것이다.

References

2) 조수철. 신호음과 파란색 행동장애 유병률에 대한 연구. 소아청소년정신과학 1994; 5:141-149.
3) 조수철. 소아청소년정신과학의 개념. 1판 서울: 서울대학교출판부 1999; p.146-150.
ABSTRACT

A FAMILY-BASED AND CASE-CONTROL ASSOCIATION STUDY OF THE DOPAMINE BETA HYDROXYLASE GENE POLYMORPHISM IN ATTENTION DEFICIT HYPERACTIVITY DISORDER

Tae Won Park, M.D., Boong Nyun Kim, M.D., Myung-Ho Im, M.D., Hee Jeong Yoo, M.D., Dahee Kang, M.D., Soo Churl Cho, M.D.
Department of Psychiatry, College of Medicine, Chonbuk National University, Jeonju

Objective: Attention deficit hyperactivity disorder (ADHD) is the most common childhood psychiatric disorder, affecting 3–5% of school age children. Although the biological basis of ADHD is unknown, family studies provide strong evidence that ADHD has a genetic basis. Recent genetic studies have suggested associations between ADHD and Taq I polymorphism of dopamine beta hydroxylase gene (DBH). The aim of this study is to test the association between ADHD and Taq I polymorphism of DBH in Korean population.

Method: We processed DNA extraction and genotyping for 106 Korean children with ADHD and their parents. Genotyping was additionally performed for 212 age and gender matched normal controls. Case-control association study was applied. And we tested the association using the transmission disequilibrium test (TDT) and haplotype-based haplotype relative risk test (HHR).

Results: There were no statistical differences of genotype distributions between cases and controls. However, we did observe preferential transmission of allele A1 of DBH Taq I polymorphism in ADHD.

Conclusion: On the whole, our results lend credence to the notion that the relationship between ADHD and DBH is complex. The number of cases and informative transmissions were small, therefore it would be premature to make any conclusions from our study concerning the role of DBH in ADHD. Further work is needed to support these findings.

KEY WORDS: Attention deficit hyperactivity disorder (ADHD) · Polymorphism · Dopamine beta hydroxylase (DBH).