Chemical constituents of *Dicentra spectabilis* and their anti-inflammation effect

A Hyeon Kim¹ · Ji Hun Jang¹ · Kyeong Wan Woo¹ · Jong Eel Park¹ · Ki Ho Lee¹ · Ho Kyung Jung¹ · Byeongkwan An² · Won Seok Jung³ · Seong Ho Ham¹ · Hyun Woo Cho¹

Received: 30 October 2017 / Accepted: 9 January 2018 / Published Online: 31 March 2018 © The Korean Society for Applied Biological Chemistry 2018

Abstract Column chromatographic separation of the MeOH extract from the roots of *Dicentra spectabilis* yielded fourteen compounds, menisdaurin (1), menisdaurilide (2), trans-N-p-coumaroaryltyramine (3), trans-N-p-feruloyltyramine (4), 4-O-feruloylquinicacid (5), chlorogenic acid (6), 3-O-feruloylquinic-acid (7), ferulic acid (8), protopine (9), Kaempferol 3,7-di-O-β-glucopyranoside (10), kaempferol 3-O-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside (11), α-rhamnoisorobin (12), astragalin (13), and nicotiflorin (14). Their structures were determined on the basis of NMR spectroscopic data. Among them, compound 1, 3, 8, and 10-14 isolated from this plant were reported for the first time. The isolated compounds (1-14) were tested for nitric oxide (NO) inhibitory activity on lipopolysaccharide-stimulated RAW 264.7 cells. Compound 3, 4 and 12 significantly inhibited NO production. Moreover, Compound 3 suppressed pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) in a dose-dependent manner. These data suggest that compound 3 possess anti-inflammatory activity and might be useful natural materials for development of anti-inflammatory agent.

Keywords Anti-inflammation effect · *Dicentra spectabilis* · Fumariaceae · Isolation · Structure elucidation

Introduction

Inflammation is an essential aspect of the host response to infection and injury and is a key factor for the maintenance of good health in response to infections. However, aberrant inflammation underlies many acute and chronic human diseases such as arthritis, and autoimmune disease (Medzhitov and Janeway 1997; Serhan and Savill 2005). Macrophages play an important role in the immune response and inflammation through the release of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin 1β and interleukin 6), and mediators in response to triggers eg, bacterial lipopolysaccharides (LPS), nitric oxide (NO) and prostaglandin E₂ (PGE₂) (Ritchlin et al. 2003).

Dicentra spectabilis are herbaceous perennial plants that are widely distributed in the wet valley areas (Sim et al. 2005). In Korea, only one species is known in *Dicentra* and it is used as an ornamental plant (Lee et al. 2004). The roots of *D. spectabilis* have been used for the treatment of various conditions such as strokes, bruises, and blood circulation (Kim et al. 2017). Previous phytochemical investigations on *D. spectabilis* have reported the isolation of fungitoxic alkaloids (Ma et al. 2000) and compounds with apoptosis-inducing activities (McNulty et al. 2007). However, only a few phytochemical studies and on *D. spectabilis* have been reported. In the course of our continuing search for anti-inflammatory components of Korean medicinal plants (Jang et al. 2016; Woo et al. 2016; Sim et al. 2017), we investigated the active constituents of *D. spectabilis*. Repeated column chromatographic separations of a MeOH extract led to the isolation of fourteen known compounds (1-14) (Fig. 1). All compounds were measured for their inhibitory activity of nitric oxide production on a LPS-induced murine macrophage cell line RAW 264.7. Among them, We elucidate, using selective compound 3, 4 and 12 isolated from *D. spectabilis*, anti-inflammatory effects. In the present study, we report the isolation and structural elucidation of compounds 1-14 and study their anti-inflammatory effects possibility.
Material and Methods

Plant materials
The roots of *D. spectabilis* were collected in Yeongwol, Gangwon province, Korea in June 2015. The plant was identified by professor Hui Kim (Mokpo National University, Mokpo, Korea). A voucher specimen (TKM-2095) of this plant was deposited in the Herbarium at the National Development Institute of Korea Medicine.

General experimental procedures
TLC was performed using Merck pre-coated silica gel F254 plates. Spots were visualized on TLC under UV light or by spraying with 10% H2SO4 in EtOH (v/v), and heating. Silica gel 60 (Merck, 230−400 mesh) and RP-C18 silica gel (YMC GEL ODS-A, 12 nm, S-75 μm) were used for column chromatography. All the compounds were purified on an Agilent A1200 series HPLC (Agilent Technologies, Santa Clara, CA, USA) using a Phenomenex Luna C18-100A column (25 cm×3 mm, particle size =5 μm). NMR spectra were recorded on a Varian UNITY INOVA 500 NMR spectrometer operating at 500 MHz (1H) and 125 MHz (13C); chemical shifts are given in parts per million (ppm; δ). ESI-mass spectra were obtained on a Schimadzu LCMS-IT-TOF mass spectrometer.

Extraction and isolation
The roots of *D. spectabilis* (1.6 kg) were extracted with 100% MeOH under reflux and filtered. The filtrate was concentrated in *vacuo* to give a MeOH extract (308 g), which was suspended in water (800 mL) and successively partitioned with n-hexane and H2O to give yields of 34 and 260 g, respectively. The H2O-soluble fraction (100 g) was separated over an RP-C18 silica gel column with 0−100% MeCN as the eluent to give seven fractions (D1−D7). Fraction D1 (25 g) was separated over an RP-C18 silica gel column with 0-5% MeCN as the eluent to give five fractions (D1-1−D1-5). Sub-fractions D1-3 (6 g) were subjected to column chromatography (CC) on silica gel (230−400 mesh), and eluted with a solvent system of CHCl3/MeOH/ H2O (20:3:0−10:4:0.3) to give eight sub-fractions (D1-3-1–D1-3-8). Sub-fraction D1-3-3 (470 mg) was purified with a RP-C18 prep HPLC (7% MeCN, isocratic, 254 nm, 22 mL/min) to yield compound 2 (25 mg). Fraction D3 (10 g) was separated over an RP-C18 silica gel column with 0-20% MeCN as the eluent to give sixteen fractions (D3-1−D3-16). Sub-fraction D3-3 (600 mg) was purified with a RP-C18 prep HPLC (7% MeCN, isocratic, 282 nm, 25 mL/min) to yield compound 1 (313 mg). Sub-fraction D3-7 (135 mg) was purified with an RP-C18 prep HPLC (8% MeCN, isocratic, 254 nm, 25 mL/min) to yield compound 6 (6 mg). Sub-fraction D3-11 (760 mg) was purified with a RP-C18 prep HPLC (11% MeCN;
isocratic, 365 nm, 25 mL/min) to yield compound 10 (580 mg). Fraction D3-13 (4.5 g) was separated over an RP-C18 silica gel column with 0-30% MeCN as the eluent to give seven fractions (D3-13-1–D3-13-7). Sub-fraction D3-13-3 (800 mg) was subjected to CC on a silica gel (230-400 mesh), eluting with a solvent system of CHCl3/MeOH (25:1–1:1) to give twelve sub-fractions (D3-13-3-1–D3-13-3-12). Sub-fraction D3-13-3-9 (420 mg) was purified with a RP-C18 prep HPLC (15-20% MeCN, gradient, 36 min, 237 nm, 20 mL/min) to yield compounds 5 (100 mg) and 7 (30 mg). Sub-fraction D3-14 (2 g) was subjected to CC on silica gel (230-400 mesh), eluting with a solvent system of EtOAc/MeOH/H2O (15:3:0.3) to give fifteen sub-fractions (D3-14-1–D3-14-15). Sub-fraction D3-14 (495 mg) was recrystallized using methanol to yield compound 11 (61 mg). Sub-fraction D3-9 (61 mg) was recrystallized using methanol to yield compound 9 (12 mg). Sub-fraction D3-16-1 (1 g) was subjected to CC on silica gel (230-400 mesh), eluting with a solvent system of CHCl3/MeOH/H2O (25:3.6:0.3–10:3:0.3) to give nine sub-fractions (D3-16-1–D3-16-9). Sub-fraction D3-16-2 (180 mg) was purified with a RP-C18 semi-prep HPLC (32% MeCN, 2.7 mL/min) to yield compound 8 (5 mg). Sub-fraction D3-16-5 (50 mg) was purified with a RP-C18 semi-prep HPLC (22% MeCN, 2.7 mL/min) to yield compound 13 (13 mg). Sub-fraction D3-16-9 (40 mg) was purified with a RP-C18 semi-prep HPLC (22% MeCN, 2.7 mL/min) to yield compound 14 (11 mg). Fraction D4 (7 g) was separated over an RP-C18 silica gel column with 0-15% MeCN as the eluent to give six fractions (D4-1–D4-6). Sub-fraction D4-3 (305 mg) was purified with a RP-C18 prep HPLC (23-25% MeCN, gradient, 50 min, 279 nm, 27 mL/min) to yield compounds 3 (37 mg) and 4 (28 mg). Sub-fraction D4-4 (215 mg) was purified with an RP-C18 prep HPLC (30-40% MeCN, gradient, 35 min, 368 nm, 20 mL/min) to yield compound 12 (20 mg).

Compound 1. LC-IT TOF MS m/z 312 [M+H]+; 1H-NMR (500 MHz, CD3OD, δ0) 6.30 (1H, d, J=9.5 Hz, H-2), 6.21 (1H, dd, J=10.0, 3.0 Hz, H-3), 5.50 (1H, s, H-7), 4.94 (1H, dd, J=8.5, 3.5 Hz, H-6), 4.56 (1H, d, J=7.5 Hz, H-1'), 4.37 (1H, m, H-4), 3.90 (1H, dd, J=2.0, 1.0 Hz, H-6b'), 3.68 (1H, dd, J=12.0, 6.0 Hz, H-6b'), 2.28 (1H, ddd, J=13.0, 5.0, 3.5 Hz, H-5a), 2.03 (1H, ddd, J=13.0, 5.0, 3.5 Hz, H-5b); 13C-NMR (125 MHz, CD3OD, δ0) 155.7 (C-1), 139.2 (C-3), 126.3 (C-2), 116.6 (C-8), 100.1 (C-1'), 95.4 (C-7), 76.7 (C-5'), 76.6 (C-3'), 73.1 (C-2'), 71.1 (C-6), 70.3 (C-4'), 64.0 (C-6), 61.7 (C-6), 34.7 (C-2').

Compound 2. LC-IT TOF MS m/z 151 [M+H]+; 1H-NMR (500 MHz, CD3OD, δ0) 6.65 (1H, d, J=10.0, 2.0 Hz, H-5), 6.34 (1H, d, J=10.0 Hz, H-4), 5.86 (1H, s, H-3), 5.04 (1H, ddd, J=13.0, 5.0, 2.0 Hz, H-8), 4.58 (1H, m, H-6), 2.84 (1H, dt, J=10.5, 5.0 Hz, H-7a), 1.55 (1H, dt, J=13.5, 5.0 Hz, H-7b); 13C-NMR (125 MHz, CD3OD, δ0) 174.5 (C-8), 164.8 (C-1), 144.6 (C-3), 119.0 (C-2), 110.1 (C-7), 78.7 (C-6), 65.9 (C-4), 39.5 (C-5).

Compound 3. LC-IT TOF MS m/z 282 [M+H]+; 1H-NMR (500 MHz, CD3OD, δ0) 7.31 (1H, d, J=15.5 Hz, H-7), 7.00 (1H, d, J=1.5 Hz, H-2), 6.98 (2H, d, J=8.5 Hz, H-2', 6'), 6.93 (1H, dd, J=8.5, 1.5 Hz, H-6), 6.67 (1H, d, J=8.5 Hz, H-3'), 6.28 (1H, dd, J=15.5 Hz, H-8), 3.36 (2H, t, J=7.5 Hz, H-8), 2.64 (2H, t, J=7.5 Hz, H-7); 13C-NMR (125 MHz, CD3OD, δ0) 167.4 (C-9), 158.5 (C-4'), 147.7 (C-4), 145.7 (C-3'), 141.2 (C-7), 131.2 (C-1), 130.9 (C-2', 6'), 127.3 (C-11), 121.2 (C-6), 117.5 (C-8), 116.5 (C-5), 116.2 (C-3', 5'), 114.3 (C-2'), 42.2 (C-8'), 34.2 (C-7).
Table 1. 1H-NMR and 13C-NMR Spectral Data of Compound 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>1H-NMR (500 MHz, DMSO-d6, δ)</th>
<th>13C-NMR (125 MHz, DMSO-d6, δ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.87 (2H, d, J = 8.0 Hz, H-2', 6')</td>
<td>21.2 (C-2', 6'), 23.3 (C-2), 49.1 (C-6), 78.3 (C-3'), 106.1 (C-10), 124.8 (C-1')</td>
</tr>
<tr>
<td>2</td>
<td>0.87 (2H, d, J = 8.0 Hz, H-2', 6')</td>
<td>21.2 (C-2', 6'), 23.3 (C-2), 49.1 (C-6), 78.3 (C-3'), 106.1 (C-10), 124.8 (C-1')</td>
</tr>
</tbody>
</table>

Cell line and cell culture

The Raw 264.7 cells were obtained from the American Type Culture Collection. Raw 264.7 cells were maintained in Dulbecco’s modified Eagle’s medium. The medium was supplemented with 100 U/mL of penicillin, 100 µg/mL of streptomycin and 10% FBS. The cells were incubated at 37°C with 5% CO₂ in humidified air.

Cell viability assay

The cytotoxicity of compounds 1-14 of Raw264.7 cells was determined by a MTS assay. Cells were split into 96-well plates at a density of 50,000 cells/well for 24 h and then treated with various concentrations of compounds 1-14 for 24 h. Then, 10 µL of MTS solution was added to each well for 3 h at 37°C. After 10 min, the absorbance was measured with ELISA microplate reader (Infinite 200 pro, Morrisville, NC, USA) at 490 nm.

NO assay

Raw 264.7 cells were plated in 96-well cell plates and stimulated with LPS (500 ng/mL) in the presence or absence of different concentrations of compounds 1-14 for 24 h. Aliquots of cell culture medium (100 µL) were mixed with 50 µL of 1% sulfanilamide (in 5% phosphoric acid) and 50 µL of 0.1% N-(1-Naphthyl)ethylenediamine dihydrochloride at room temperature. After 10 min, the absorbance was determined at 540 nm using an ELISA plate reader (Infinite 200 pro).

Pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) ELISA assay

The suppressive effect of compounds 3, 4, and 12 on the pro-inflammatory cytokines production from LPS (500 ng/mL)-treated Raw 264.7 cells were determined according to the manufacturer’s instructions. Raw 264.7 cells were treated with compounds 3, 4, and 12, respectively, for 1 h, followed by addition of 500 ng/mL LPS for 24 h. Cell culture medium was used for pro-inflammatory cytokines assay using a mouse ELISA kit (R&D system, Minneapolis, MN, USA).

Statistical analysis

All data are presented as the mean ± SD. Statistically significant differences between two groups were determined by t-test using SPSS version 21 (Chicago, IL, USA). Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001.
Result and Discussion

Identification of compound 1-14

Compounds 1-14 were identified by comparing the 1H-, 13C-NMR, and LC-IT TOF MS data with the literature values to be menisdaurin (1) (Seigler et al. 2005), menisdaurilide (2) (Audran and Mori 1998), trans-N-p-coumaroyltyramine (3) (Kim et al. 2014), trans-N-p-feruloyltyramine (4) (Choi et al. 2016), 4-O-feruloylquinicacid (5) (Ge et al. 2007), chlorogenic acid (6) (Han et al. 2006), 3-O-feruloylquinicacid (7) (Ge et al. 2007), ferulic acid (8) (Han et al. 2006), protopine (9) (Seger et al. 2004), Kaempferol 3,7-di-O-β-D-glucopyranoside (10) (Lee et al. 2009), kaempferol 3-O-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside (11) (Lee et al. 2017), α-rhamnosoisorbin (12) (Cha and Lee 2007), astragalin (13) (Seo et al. 2016), and nicotiflorin (14) (Tran et al. 2014). Compound 1, 3-8, and 10-14 were reported for the first time from this plant.

Effect of isolated compounds on cytotoxicity

First, in order to get knowledge the anti-inflammatory effect in raw 264.7 cells, we investigated cytotoxic levels of compounds 1-14 using an MTS assay. MTS, an indicator of dehydrogenase activity, is commonly used to measure cell viability and proliferation (Dunigan et al. 1995). As a result, compound 9 reduced cell viability in a concentration-dependent manner ranging from 6.25 to 100 µM and was excluded from further testing. Compound 2, 12, and 14 exhibits toxicity at concentrations over 100 µM in RAW264.7 cells, the other compounds have no cytotoxicity at the concentration (Fig. 2).

Effect of isolated compounds on LPS-induced NO

NO is formed by an arginine deamination reaction. There are three isozymes related to NO production i.e., iNOS, eNOS, and nNOS. Of these isozymes, the iNOS enzyme is closely involved in inflammation and is expressed in monocytes, macrophages and neutrophils (Green et al. 1990; deRojas-Walker et al. 1995). To examine the suppressive effect of compounds on LPS-induced NO production, we measured the NO concentration using a Griess-reagent method and RAW 264.7 cells. As shown in Fig. 3, compounds 3, 4, and 12 are effective in reducing NO, but other compounds showed weak or no activities.

Effects of isolated compounds on LPS-induced TNF-α, IL-6, and IL-1β levels

IL-1β, IL-6, and TNF-α are well-known as pro-inflammatory cytokines that are secreted by macrophages as part of the initiation
of the inflammatory response (Jang et al. 2016; Zhao et al. 2017). These cytokines play a role in the regulation of cell proliferation, homeostasis, and immune response. But above all, the primary function is to recruit other immune cells to inflammatory sites (Dinarello 1984; Buetler et al. 1985; Bradding et al. 1994). We investigated the effects of compound 3, 4, and 12 on the levels of TNF-α, IL-6, and IL-1β secreted levels. IL-1β, IL-6, and TNF-α levels were increased in RAW264.7 cells following addition of LPS. Compound 3 showed a significant inhibitory effect of inflammation via repression of pro-inflammatory cytokines. Compound 4 slightly inhibited cytokines, but compound 12 did not affect cytokine production (Fig. 4).

In the present study, *Dicentra spectabilis*-derived compounds 3, 4, and 12 repressed the production of these macrophage mediators in LPS-induced RAW264.7 cells. Compound 3, in particular, effectively inhibited LPS-induced pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β). Taken together, the results suggest that a Korean indigenous plant *Dicentra spectabilis*-derived compound 3 could be used as anti-inflammatory drugs and substrates.

Acknowledgments This study was conducted as a part of a basic standardization project for herbal medicinal materials of Korean indigenous resources, supported by a grant from the Ministry of Health and Welfare Korea and Jellanamdo, in 2012–2016. We are thankful to the Korea Basic Science Institute (KBSI) for the measurements of NMR and MS spectra.
Fig. 4 Effects of compounds 3, 4, and 12 isolated from D. spectabilis on LPS induced pro-inflammatory cytokines level of (A) TNF-α, (B) IL-6 and (C) IL-1β production in RAW 264.7 cells. Cells were pretreated with compounds for 30 min before being incubated with LPS (500 ng/mL) for 24 hrs. The culture supernatant was collected and analyzed TNF-α, IL-6, and IL-1β using enzyme-linked immunosorbent assay (ELISA). Significant differences between treated groups were determined using the Student’s t-test. Values shown are the mean ± SD of triplicate determinations from three separate experiments. Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001 when compared to the LPS alone treated group.
References

