Isoprenylated flavonoids from the root bark of *Morus alba* L. and their inhibition effect on NO production in LPS-induced RAW 264.7 cells

Jae-Woo Jung¹ · Jung-Hwan Ko¹ · Won-Min Ko² · Ji-Hae Park¹ · Yun-Su Baek³ · Youn-Chul Kim² · Nam-In Baek¹

Received: 14 February 2017 / Accepted: 5 March 2017 / Published Online: 30 June 2017 © The Korean Society for Applied Biological Chemistry 2017

**Abstract** The root bark of *Morus alba* L. were extracted with 80% aqueous MeOH, and the concentrated extract was partitioned with EtOAc, n-BuOH, and H₂O fractions. The repeated silica gel (SiO₂), octadecyl SiO₂ (ODS), and Sephadex LH-20 column chromatographies of the EtOAc fraction led to isolation of 12 phenolic compounds. The chemical structures of the compounds were determined as sanggenol Q (1), sanggenol A (2), sanggenol L (3), kuwanon T (4), cyclomorusin (5), sanggenon F (6), sanggenol O (7), sanggenon N (8), sanggenon G (9), mulberrofuran G (10), mulberrofuran C (11), and moracin E (12). All isolated compounds were evaluated for inhibit lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophages.

**Keywords** Anti-inflammatory · Isoprenylated flavonoid · *Morus alba* · Nitric oxide production · RAW 264.7 · Root bark

**Introduction**

The root bark of mulberry trees, known in Korea as Sang-Baek-Pi, is used for a variety of medicinal purposes in South Asian nations (Naoki et al. 2001; Ahn 2012). In previous research, we isolated isoprenylated flavonoids from root bark and evaluated them for neuroprotective and hepatoprotective activities (Jung et al. 2015). Under continued exploration for other pharmacological activities, the isolated isoprenylated flavonoids were evaluated for anti-inflammatory activity via assessment of the inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW 264.7 cells.

**Materials and Methods**

Isolation and identification of isoprenylated flavonoids

Previously, we isolated 12 isoprenylated flavonoids from the EtOAc fraction of the root bark using silica gel (SiO₂), octadecyl SiO₂ (ODS), and Sephadex LH-20 column chromatographies and were identified as sanggenol Q (1), sanggenol A (2), sanggenol L (3), kuwanon T (4), cyclomorusin (5), sanggenon F (6), sanggenol O (7), sanggenon N (8), sanggenon G (9), mulberrofuran G (10), mulberrofuran C (11), and moracin E (12) (Jung et al. 2015). NO production was determined by measuring the amount of nitrite ion (NO₂⁻) using a method based on the Griess reaction as previously described (Lee et al. 2004). RAW 264.7 cells were incubated in 96-well cell culture plates (2 × 10⁴ cells/well) for 1 h. The cells were cultured with various concentrations of the test compounds (5, 10, 20, and 40 μM) for 12 h, and then stimulated with LPS (1 μg/mL) for additional 18 h. An aliquot of each cell culture supernatant (100 μL) was mixed with Griess reagent (100 μL) and incubated for 10 min at room temperature, and absorbance
was measured at 550 nm. The NO\textsuperscript{2−} concentration was determined by comparison of the standard curve using the known concentration of sodium nitrite (NaNO\textsubscript{2}) (Chun et al. 2012). Butein (10 \(\mu\)M) was used as a positive control (Lee et al. 2004).

**Results and Discussion**

All isolated compounds 1-12 (Fig. 1) were evaluated for inhibiting LPS-induced nitric oxide production in RAW 264.7 macrophages.
LPSs, in the form of lipoglycans and endotoxins, are found in the outer membrane of Gram-negative bacteria. The activation of LPS produces a variety of inflammatory mediators, including NO, interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), IL-6, and prostaglandins via inducible cyclooxygenase (COX-2) (Chun et al. 2012). Over-activation of NO results in many biological responses to tissue and neuronal injury, fever, and septic shock (Lee et al. 2004). Therefore, in this study, active compounds capable of blocking NO production in LPS-stimulated RAW 264.7 macrophage cells were identified. Compounds 4, 6, and 10 exhibited an inhibitory effect on NO production in LPS-induced RAW 264.7 cells in a dose-dependent manner (Fig. 2). The IC_{50} values of compounds 4, 6, and 10 were 12.85 ± 1.84, 32.35 ± 5.25, and 24.03 ± 4.96 μM, respectively. Yang et al. (2011) also reported that isoprenylated flavonoids including kuwanon T (4) and sanggenon F (6) showed similar inhibitory effects on NO production in LPS-stimulated RAW 264.7 cells, the IC_{50} values of which were 10.0 and 19.0 μM, respectively. However, the IC_{50} values of moracin D (18.0 μM) and kuwanon E (14.9 μM) were very different from those of similar compounds 2 and 12 (greater than 40 μM). Therefore, the anti-inflammatory mechanism of extracts of Sang-Baek-Pi and its isopropylated flavonoids should be explored in further studies through the analysis of nuclear factor-κB (NF-κB), LPS-stimulated THP-1 monocyes, and inhibition of the iNOS pathway.

Acknowledgments This work was carried out with the support of “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ01141501)” Rural Development Administration, Korea.

References