Within the São Roque Domain of the Neoproterozoic Ribeira Fold Belt (southeastern Brazil) we have identified an ophiolitic complex (Pirapora ophiolite) displaying a characteristic oceanic lithospheric stratigraphy. From bottom to top, it includes: 1) a lower crustal/upper mantle section (dunitic cumulates with chromitite-magnetite layers); 2) a lower crustal section (metagabbro and flasergabbro mafic cumulates with gabbroic pegmatoids); and 3) an upper crustal section (deformed fine-grained, greenschist facies metamafics with remains of a sheeted dike complex, pillow lavas and cherts). The metabasaltic rocks have geochemical characteristics that are transitional between those of MORB and island arc basalts, similar to basaltic rocks from mature back-arc basins where the influence of subduction components should not be dominant. U-Pb ages of 628 ± 9 Ma are interpreted as the crystallization age of mafic magmas, and altogether the geochronological data suggests that the emplacement of Pirapora ophiolite (~ 620 Ma) took place shortly after oceanic crust generation, probably during oceanic ridge collision with the continental margin.

Introduction

The Neoproterozoic Ribeira Fold Belt (Almeida et al., 1973; Cordani and Brito Neves, 1991) extends along the southeastern Brazil and, together with the Damara Belt in Africa, comprises an orogenic system which borders the São Francisco and Congo Cratons, and an inferred cratonic block that actually occurs under the Paleozoic sedimentary rocks of the Paraná Basin. The Ribeira Belt system was active during the later stages of Brasiliano (Pan-African) Wilson Cycle. It is composed of Archean, Paleoproterozoic and Mesoproterozoic rocks, reworked between 700–470 Ma during the amalgamation of the Gondwana Supercontinent (Figure 1).

The central segment of Ribeira Belt, in São Paulo State, displays a long-term continuous orogenic evolution, from 650 to 480 Ma (Dias Neto, 2001), which was previously considered in terms of two orogenic cycles (Brasiliano: 670–600 and Rio Doce: 590–480 Ma, orogenies; Campos Neto and Figueiredo, 1995). The central part of the Ribeira Belt is composed of three different geological domains (Costeiro, Embu and São Roque), separated by prominent shear zones, and differing from each other on the age of their respective crustal protholiths, lithological assemblages and geological evolution. The Costeiro and Embu domains consist of Paleoproterozoic and Archean-Paleoproterozoic crust, respectively, both intensely reworked by Brasiliano deformation, high-grade metamorphism and partial melting processes. The São Roque Domain (Serra do Itaberaba and São Roque Groups; Juliani et. al., 2000; Hackspacher et al., 2000) is composed of Meso- to Neoproterozoic low/medium grade volcano-sedimentary sequences. The São Roque Group has been interpreted (Figueiredo et al., 1982; Bergmann, 1988; Tassinari, 1988; Sadowski and Tassinari, 1991; Hackspacher, 2000) as developed in an ensialic back-arc environment.

Neoproterozoic units with ophiolitic affinities (816 Ma; Pedrosa Soares et al., 1998) have been suggested in the northern region of the Ribeira Belt. However, in the central segment of Ribeira Belt the available tectonic models have considered exclusively an ensialic evolution (Tassinari, 1988; Bergmann, 1988; Sadowski and Tassinari, 1991, Trompette 1994, Hackspacher et. al. 2000), involving intense Brasiliano extensional reactivation of older (Archean to Paleoproterozoic) continental basement.

Recent research in the central Ribeira Belt meta-volcanics from São Roque Group, Pirapora Formation (SE São Paulo state) has allowed us to identify an ophiolitic complex. The main aim of this paper is to characterize the geological, geochemical/geochronological and tectonic features of the Pirapora ophiolite. These findings have important consequences for Brasiliano geodynamics (particularly in the central segment of the Ribeira Belt) that will be discussed in this paper.
Geological setting

The São Roque Group is a Neoproterozoic metavolcano-sedimentary sequence (Hackspacher, 2000), which overlies the Mesoproterozoic Serra do Itaberaba Group (Juliani et al., 2000), and it is bordered to the north by the Jundiuvira shear zone and to the south by the Taxaquara-Jaguari fault zones. These faults are represented by extensive NE-SW mylonite belts which acted as dextral for Taxaquara fault and oblique-slip for Jundiuvira fault (Sadowski, 1983) (Figure 2).

In the studied area (Pirapora de Bom Jesus county, São Paulo state; see Figure 3) we have established several lithotectonic units separated by major thrust surfaces. The degree of exposure is generally poor, but major thrusts are well delineated by increasingly sheared domains of metric thickness. Those lithotectonic units include, from bottom to top, the following:

Autochthon

Autochthon units in the area comprise the Serra Itaberaba Group (1395 ± 10 Ma; Juliani et al., 2000) and the São Roque Group (~630 Ma; Hackspacher et al., 2000), whereas the Serra Itaberaba Group underwent polyorogenic (Uruaçuano/Brasiliano; up to amphibolite facies) metamorphism and deformation, the upper São Roque Group displays a simpler tectonothermal evolution. São Roque Group was deposited unconformably on top of the Serra do Itaberaba Group and has been exclusively affected by Brasiliano deformation and low-grade metamorphism.

The autochthon São Roque Group units comprise calc-silicated, phyllites, and psamitic rocks of the Estrada dos Romeiros Formation (Bergman, 1988). All these units have been affected by two main phases of Brasiliano deformation. D1 reflects the emplacement of the allochthonous unit, and corresponds to NE verging recumbent folds, with axial plane slaty cleavage contemporaneous with greenschist facies (biotite-grade) metamorphism; D2 is upright folding with NE-SW axes generating the main synform and antiform regional structures, with gentle to moderate axial plunges.

Parautochthon

The São Roque Group parautochthonous unit is separated from the autochthon by a thrust plane, constituting thrust duplexes below the upper Allochthon unit (Figure 4). It is composed mainly of stromatolitic carbonates displaying normal polarity.

Allochthon

The allochthon is composed of the Pirapora de Bom Jesus ophiolite (Figure 4). The general characteristics of the Pirapora ophiolite complex will be described in the next paragraph.
Pirapora ophiolite

General geology

Despite of the restricted areal outcropping distribution of the ophiolitic complex, detailed mapping (Bistrichi, 1982; Bergman, 1988; this study) has allowed identification of various domains within it, showing internal organization and contrasting lithostratigraphic characteristics. No single domain has shown a complete record of the typical oceanic/ophiolitic stratigraphy; however, by adding up the partial sections that they collectively record, it is possible to recognize a characteristic oceanic lithospheric stratigraphy in the area. These include: 1) a lower crustal/upper mantle section, including the chromitite lenses described by Bergman (1988) and magnetite massive pod-like bodies (5–50 cm thick, 2–3 m long) associated with weathered metabasic rocks on the top and talc schist on the bottom. The magnetite grains display cumulate texture, are euhedral to rounded and subliminitrail in size, and appear associated with filosilicate minerals composed mainly of talc and serpentine; 2) a lower crustal section which includes metagabbro and flasergabbro mafic cumulates, displaying plagioclase-rich gabbroic pegmatoids and (discrete) dyke intrusions towards the top; and 3) an upper crustal section mainly composed of highly deformed (fine-grained), greenschist facies mafic schists. Nevertheless, within less-deformed areas it is possible to identify the remains of a sheeted dyke complex, as well as a typical pillow lava member (Figueiredo et al., 1982; Lazzari, 1987) and chemically precipitated chert sediments. Despite the difficulties to precisely define the limits between lithological units, (Burke et al., 1981), this is a typical ophiolite sequence with normal polarity at the cartographic scale. It is confirmed by polarity criteria observed in the field and carefully documented by Lazzari (1987) for the pillow lava member. The oceanic interpretation of this stratigraphy is supported by the available geochemical data.

Geochemistry

On the basis of major element geochemistry Lazzari (1987) suggested general oceanic (MORB) affinities for the Pirapora metabasaltic rocks.

Our own new Pirapora geochemical study includes major and trace element data and Sr and Nd isotopic analysis (Tables 1 and 2). Initial $^{87}\text{Sr}/^{86}\text{Sr}$ ratios are rather high, mostly ranging from 0.705097 to 0.706505 (with one sample, TC-Pi-01, at 0.712322; Table 2). High $^{87}\text{Sr}/^{86}\text{Sr}$ values obviously result from oceanic hydrothermal alteration processes (reflected by the presence of small stockwork type quartz-sulfide mineralisations, mainly associated with thrust faults in contact zones), which increased the original igneous Sr isotopic compositions; in contrast, Nd isotopic compositions seem unaffected by those processes (e.g., DePaolo, 1988). Thus, in the following discussion we will use exclusively the relatively immobile elements and Nd isotopic compositions.

The petrographic and geochemical data support Lazzari’s observations (1987), indicating that the Pirapora mafic rocks were originally tholeiitic basalts/dolerites/gabbros. They are characterized by rather low incompatible element contents, with concentrations of Zr, Hf, Ta, La, Ce, P and Th (Table 1) well within the range of reported values for ocean-floor tholeiites (e.g. Kay and Hubbard, 1988). The oceanic interpretation of this stratigraphy is supported by the available geochemical data.

Table 1 Representative chemical analysis of Pirapora ophiolite rocks

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Rock Type</th>
<th>TC9P01</th>
<th>TC9P14C</th>
<th>TC9P04A</th>
<th>TC9P4B</th>
<th>TC9P4D</th>
<th>TC9P4E</th>
<th>TC9P6B</th>
<th>TC9P7</th>
<th>TC9P11</th>
<th>TC9P12</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂ wt%</td>
<td></td>
<td>52.91</td>
<td>52.55</td>
<td>48.15</td>
<td>48.49</td>
<td>48.82</td>
<td>48.38</td>
<td>49.65</td>
<td>49.15</td>
<td>49.75</td>
<td>48.08</td>
</tr>
<tr>
<td>TiO₂</td>
<td></td>
<td>1.32</td>
<td>1.19</td>
<td>1.03</td>
<td>1.09</td>
<td>1.07</td>
<td>1.08</td>
<td>1.35</td>
<td>1.17</td>
<td>1.16</td>
<td>1.02</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td></td>
<td>11.65</td>
<td>10.26</td>
<td>11.54</td>
<td>10.43</td>
<td>11.90</td>
<td>11.97</td>
<td>13.69</td>
<td>12.25</td>
<td>12.08</td>
<td>12.25</td>
</tr>
<tr>
<td>MgO</td>
<td></td>
<td>0.21</td>
<td>0.21</td>
<td>0.17</td>
<td>0.12</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.17</td>
<td>0.16</td>
<td>0.17</td>
</tr>
<tr>
<td>CaO</td>
<td></td>
<td>4.85</td>
<td>5.95</td>
<td>7.04</td>
<td>6.38</td>
<td>7.29</td>
<td>7.60</td>
<td>6.95</td>
<td>7.81</td>
<td>6.93</td>
<td>6.35</td>
</tr>
<tr>
<td>MnO</td>
<td></td>
<td>6.87</td>
<td>7.51</td>
<td>10.57</td>
<td>14.21</td>
<td>10.7</td>
<td>9.62</td>
<td>7.74</td>
<td>7.12</td>
<td>7.21</td>
<td>8.81</td>
</tr>
<tr>
<td>Na₂O</td>
<td></td>
<td>4.35</td>
<td>4.05</td>
<td>3.03</td>
<td>2.17</td>
<td>2.97</td>
<td>2.97</td>
<td>3.86</td>
<td>4.17</td>
<td>4.27</td>
<td>3.01</td>
</tr>
<tr>
<td>K₂O</td>
<td></td>
<td>0.06</td>
<td>0.14</td>
<td>0.11</td>
<td>0.10</td>
<td>0.14</td>
<td>0.16</td>
<td>0.26</td>
<td>0.39</td>
<td>0.26</td>
<td>0.13</td>
</tr>
<tr>
<td>P₂O₅</td>
<td></td>
<td>0.11</td>
<td>0.10</td>
<td>0.09</td>
<td>0.08</td>
<td>0.12</td>
<td>0.11</td>
<td>0.10</td>
<td>0.09</td>
<td>0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>LOI</td>
<td></td>
<td>2.04</td>
<td>3.44</td>
<td>2.46</td>
<td>1.97</td>
<td>2.37</td>
<td>2.47</td>
<td>2.27</td>
<td>2.50</td>
<td>2.47</td>
<td>2.54</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>99.45</td>
<td>98.85</td>
<td>98.04</td>
<td>99.19</td>
<td>99.59</td>
<td>98.64</td>
<td>100.29</td>
<td>100.41</td>
<td>100.13</td>
<td>100.16</td>
</tr>
</tbody>
</table>

Analyses by ICP-MS and XRF×NAA at Activation Laboratories (Canada)
and most samples display relatively depleted to flat LREE patterns (La/Sm = 0.70–1.02; La/Yb = 0.79–1.21; Figure 5a), similar to those of N/T-MORB (normal to transitional mid-ocean ridge basalts) and basalts from other ophiolites (e.g., Menzies et al., 1977; Pedersen and Hertogen, 1990). In accordance with their REE patterns, Pirapora samples (except for cumulate metagabbros) are characterized by near chondritic Ti/Zr (109–135) and Zr/Y (2.5–3.4), and by slightly Nb, Ta depleted Zr/Nb (15–56) and Zr/Ta (240–500) values, which are also comparable to those commonly reported for N/T-MORB (Sun et al., 1979).

Despite their general oceanic geochemical characteristics, Pirapora metabasites show variable incompatible element ratios (e.g., La/Nb = 0.7–3.3; La/Th = 10–48; Table 1) and isotopic compositions (εNd (T = 600 Ma) = 4.18 to +3.5; Table 2), implying derivation of the original basaltic magmas from an heterogeneous mantle source. Examination of the geochemical data (Tables 1 and 2) indicates that there is a negative correlation between εNd (T = 600 Ma) values, La/Yb ratios (Figure 5b) and LREE abundances, suggesting that it might be possible to derive the Pirapora magmas by mixing of an LREE-enriched low-εNd magma with a N-type MORB, or by mixing of sources (Langmuir et al., 1978). Moreover, some Pirapora metabasalts/dykes display La and Th enrichment relative to Nb and Ta (see Figure 5a), leading to a decoupling between large ion lithophile (LILE) and high field strength (HFSE) elements, which distinguishes these samples from MORB and within-plate basalts (Wood et al., 1981). Indeed, HFSE are characteristically depleted in island-arc and continental margin basalts (Perfit et al., 1980; Pearce, 1982), suggesting that the Pirapora ophiolite trace element chemical characteristics are transitional between that of oceanic ridge and orogenic basalts; this same chemical pattern has also been reported from many back-arc basins and is accepted as the fundamental characteristic of back-arc basin geochemistry (e.g., Saunders and Tarney, 1991). The tectonic situation of back-arc spreading (Karig, 1974) is one where there is potential for involvement of subduction-related components that would certainly affect back-arc basin source compositions and magma generation processes. As it might be anticipated, there is a geochemical continuum in back-arc basin basalts (Crawford et al., 1981; Saunders and Tarney, 1984; Hawkins and Melchior, 1985; Gill, 1987; Hickey and Vargas, 1989), from those of orogenic character to those with variable LREE.

Table 2
Sm, Nd and Sr isotopic compositions of the Pirapora ophiolite

<table>
<thead>
<tr>
<th>Sample</th>
<th>Field No.</th>
<th>Rock type</th>
<th>Sm (ppm)</th>
<th>Nd (ppm)</th>
<th>εNd (T = 600 Ma)</th>
<th>εNd (T = 600 Ma) (2σ) error</th>
<th>εNd (T = 600 Ma) (2σ) error</th>
<th>εNd (T = 600 Ma) (2σ) error</th>
<th>Sr/Sr* (2σ) error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1651</td>
<td>TC-R-4A A1</td>
<td>WR/Basalts</td>
<td>2.451</td>
<td>7.386</td>
<td>0.2006</td>
<td>0.0007</td>
<td>0.512805</td>
<td>0.00010</td>
<td>2.96</td>
</tr>
<tr>
<td>1652</td>
<td>TC-R-4A A1</td>
<td>WR/Basalts</td>
<td>2.375</td>
<td>7.120</td>
<td>0.2017</td>
<td>0.0007</td>
<td>0.512805</td>
<td>0.00014</td>
<td>3.23</td>
</tr>
<tr>
<td>1653</td>
<td>TC-R-4C A1</td>
<td>WR/Basalts</td>
<td>2.721</td>
<td>8.306</td>
<td>0.1981</td>
<td>0.0007</td>
<td>0.512738</td>
<td>0.00013</td>
<td>1.84</td>
</tr>
<tr>
<td>1654</td>
<td>TC-R-4C A1</td>
<td>WR/Basalts</td>
<td>2.538</td>
<td>7.218</td>
<td>0.2126</td>
<td>0.0007</td>
<td>0.512878</td>
<td>0.00015</td>
<td>3.47</td>
</tr>
<tr>
<td>1655</td>
<td>TC-R-4E A1</td>
<td>WR/Basalts</td>
<td>2.490</td>
<td>7.468</td>
<td>0.2016</td>
<td>0.0007</td>
<td>0.512804</td>
<td>0.00018</td>
<td>2.06</td>
</tr>
<tr>
<td>1656</td>
<td>TC-R-4D A1</td>
<td>WR/Basalts</td>
<td>2.530</td>
<td>7.663</td>
<td>0.1995</td>
<td>0.0007</td>
<td>0.512797</td>
<td>0.00017</td>
<td>2.09</td>
</tr>
<tr>
<td>1657</td>
<td>TC-R-4D A1</td>
<td>Plagioc./Basalts</td>
<td>0.538</td>
<td>1.758</td>
<td>0.1850</td>
<td>0.0006</td>
<td>0.512614</td>
<td>0.00029</td>
<td>0.43</td>
</tr>
<tr>
<td>1658</td>
<td>TC-R-4D A1</td>
<td>Amphib./Basalts</td>
<td>3.864</td>
<td>25.221</td>
<td>0.2154</td>
<td>0.0007</td>
<td>0.519314</td>
<td>0.00010</td>
<td>4.34</td>
</tr>
</tbody>
</table>

Figure 5a Chondrite normalized (Sun and McDonough, 1989) trace element diagram for the mafic rocks from Pirapora ophiolite.

Figure 5b εNd plotted against La/Yb (chondrite normalized) for lavas and dikes from Pirapora ophiolite.
depleted/enriched MORB characteristics from mature back-arc basins. Like most back-arc basin basalts, Pirapora metabasaltic rocks also have geochemical characteristics that are transitional between those of MORB and island arc basalts, but their consistent LIL-REE depletion further suggests that the generation of the Pirapora ophiolite took place in a mature back-arc basin where the influence of subduction components should not be dominant. In this situation rising diapirs of partially melted, variously depleted (heterogeneous) MORB-type source (related to back-arc spreading) may still interact with leftovers of the overlying, less refractory, arc-related mantle wedge, inducing further generation of minor LILE-enriched melts. Variable mixing, prior to eruption, between (dominant) MORB and LILE-enriched magma types could well account for the observed isotopic and trace element variations in the Pirapora ophiolite.

Available research suggests that the origin of many ophiolites is best explained by spreading in association with convergent plate margins (Pearce et al., 1984; Nicholas, 1989). These ophiolitic fragments will potentially exhibit a complex geology often juxtaposing various components which are typical of different tectonic settings (e.g., normal oceanic crust, island-arc or active continental margin complexes and crust formed by back-arc spreading). The Pirapora ophiolite is indicative of a major Neoproterozoic geosuture in the Brasiliano orogen. Its geochemical characteristics also imply an origin (at a back-arc setting) in the vicinity of a subduction zone.

Geochronology

Previous geochronological studies of the São Roque Domain (Juliani et al., 2000) have dated (U-Pb, zircon) the basal volcanic unit of the Serra do Itaberaba Group, constraining the maximum age of the autochthonous unit at 1395 ± 10 Ma. Hackspacher et al. (2000) reported U-Pb ages of 628 ± 9 Ma on a near concordant monazite from the Pirapora Formation metabasalts, which they interpreted as the crystallization age of the respective magmas. Thus, this age corresponds to the generation age of the oceanic crust now represented by the Pirapora ophiolite.

Regional granitoid intrusive activity represented by the late-tectonic Cantareira batholith, which has been dated (zircon U-Pb) at 669 ± 8 Ma (Tassinari, 1988), demonstrates that convergence inside the Brasiliano orogen had already started when the ophiolite was generated by oceanic spreading. It supports our geochemical inferences, indicating that the Pirapora ophiolite was generated in a back-arc basin environment. A rhyolite dike (607 ± 28 Ma; Hackspacher et al., 2000) which crosscut the metasediments of the upper Estrada dosromeiros Formation, suggests the persistence of felsic magmatism in the back-arc basin continental margin, contemporaneous with oceanic spreading. Sm-Nd mantle-depleted model ages of ca. 2.0 Ga obtained for most of the intrusive granitoid rocks, which occurs in the São Roque Group (Tassinari et al., 1985, Dantas et al., 2000), suggests that the Brasiliano, Pirapora back-arc basin, oceanization process took place within a paleoproterozoic continental basement.

We have attempted a direct Sm-Nd dating of syn-D1, green-schist facies albite-actinolite assemblage from a Pirapora Formation dyke, in order to constrain the emplacement age of the ophiolite. The results define a line slope corresponding to 558 ± 68 Ma, and initial 143Nd/144Nd of 0.51194 ± 0.00011 (Figure 6). Despite the large error, the age brackets overlap the more precise K-Ar cooling age determinations (610–620 Ma; Tassinari et al., 1985) of syn-D1 metamorphic biotites from the Autochthonous unit.

Altogether, geochronological data suggests that the emplacement of Pirapora ophiolite (~ 620 Ma) took place shortly after its generation (628 ± 9 Ma) at the oceanic ridge, probably during oceanic ridge collision with the continental margin. The implied obduction mechanism for the Pirapora ophiolite supports the observation that many ophiolites are tectonically decoupled along the (mechanically weak) lithosphere-asthenosphere boundary and initially displaced as immature oceanic lithosphere in close proximity to the respective spreading center (Spray, 1984).

Geodynamic model

As already referred, each tectonic unit occurring in the studied area (Pirapora de Bom Jesus county, Central Ribeira Belt, SE São Paulo state) has normal polarity, with contrasting lithologies and corresponding to very different sedimentary and/or petrotectonic environments.

The **Autochton** represents a passive margin of the Brasiliano cycle, as indicated by the maturity of the sedimentary sequence (Bergman, 1988). Previous regional studies favoring an ensialic evolution (Tassinari, 1988; Berghman, 1988; Sadowski and Tassinari, 1991; Trompette, 1994, Hackspacher et al., 2000) rest on the assumption that the Pirapora Formation was developed "in situ", as a member of the São Roque Group. In contrast, the present study indicates that the Pirapora Formation is part of a distant ophiolite allochton, unrelated to the São Roque Group.

The **Paraautochton** is interpreted as carbonate barrier in the oceanic side of the passive margin (or, alternatively, around an oceanic island).

The **Allochton** represents oceanic crust and (eventually) sub-oceanic mantle. Both the geochemical signature and geochronological constraints point to a derivation from a back-arc basin inside the Brasiliano orogen. Indeed, the age of the ophiolite protolith (628 ± 9 Ma; Hackspacher et al., 2000) is younger than other Brasiliano orogenic events and related intrusive activity (Tassinari et al., 1985; Tassinari and Campos Neto, 1988), showing that convergence inside the orogen had already started when the ophiolite was generated by back-arc spreading.

The Pirapora ophiolite was obducted on a carbonate barrier (adjacent to it) and finally emplaced on top of the passive margin. Both the location of the back-arc basin and the direction of obduction remain controversial, because these earlier (obduction related) orogenic events were obliterated by later transpression in the Ribeira Belt, associated with oblique continental collision. Narrow back-arc basins related to closure of the Adamastor ocean at about 550–530 Ma (Brötz Neves et al., 1999) became cryptic sutures separating the Costeiro, Embú and São Roque Domains, with large components of dextral transpression. Given the orogenic polarity of the Ribeira-Damara Belt (Porada, 1989), derivation of the Pirapora ophiolite from inside the Brasiliano branch is more probable than from the Damaran branch of the orogen. The geometry and kinematics of the ophiolite slice are thus conjectural, but the absence of a clear meta-
morphic sole suggests ophiolite emplacement as a thin obducted nappe, with very large displacement on its base.

We must conclude that the Ribeira-Damara Belt was produced by plate tectonic processes; indeed, the Pirapora back-arc basin must have been induced by the closure of a possibly large ocean (Adamastor) involved in the respective Wilson cycle. The scarcity of ophiolites, high-pressure suture rocks and the large volume of synorogenic granitoids, as well as the large width of the belt, show that the Ribeira-Damara system is of Variscan type rather than of Alpine type affinities (Rey et al., 1997; Ribeiro, 1999).

Acknowledgements

The authors are grateful to technicians of the Geochronological Research Center for their help in the isotopic analytical work. This project was supported by grants from the Brazilian Ministry of Science and Technology (PRONEX 41.96.0889.00), the São Paulo State Foundation of research Support (FAPESP 97/00640-5) and the international cooperation project CAPES - Brasil / ICICT - Portugal - (042/99).

References

Tassinari, C. C. G., 1988, As idades das rochas e dos eventos metamórficos da porção Sudeste do Estado de São Paulo e sua evolução crustal. Unpub-

Episodes, Vol. 24, no. 4

CALL FOR PAPERS

Episodes is the quarterly science and news journal of the International Union of Geological Sciences (IUGS). It focuses on the publication of results of scientific research and other information addressing issues of interest to the global earth-science community. Special emphasis is given to topics involving geological aspects of population growth and economic development and their resulting impacts on or implications for society. As the principal publication of the IUGS, Episodes also carries information about IUGS scientific programs and activities to the extent necessary to communicate effectively with the worldwide IUGS constituency.

Contributions of the following types of manuscripts are here solicited:

- review papers
- scientific articles
- conference reports
- news and views
- letters to editor
- book reviews
- information on training courses (especially those geared to participants from developing countries)
- noteworthy new publications, including national or regional geologic maps

Episodes also invites photos or other images for the front cover. Photos must be of high technical quality and tell an interesting geological story. A color transparency and one color print (at least 9 cm × 12.6 cm) are required for submission, which should be supplemented with a short explanatory paragraph (no more than 100 words).

Please address all contributions to:

The Editor
Episodes
P. O. Box 823, 26 Baiwanzhuang Road
100037 Beijing, CHINA
Tel: +86-10-68320827; +86-10-68329084
Fax: +86-10-68328928;
E-mail: episodes@public2.bta.net.cn.