MiR-204 acts as a potential therapeutic target in acute myeloid leukemia by increasing BIRC6-mediated apoptosis

Zhiguo Wanga,1,2, Hong Luoa,3, Zehui Fang4, Yanling Fan2, Xiaojuan Liu2, Yujing Zhang4, Shuping Rui2, Yafeng Chen2, Luojia Hong4, Jincheng Gao4, Mei Zhang1

1Department of Hematology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi Province; 2Department of Bone Marrow Transplantation, Harbin Hematological Cancer Institute, Harbin the First Hospital, Harbin; 3Department of Hematology, the First Hospital of Qiqihar; 4Department of Endocrinology, the 4th Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People’s Republic of China.

Running title: The anti-carcinogenic role of microRNA-204 in AML

Address correspondence to: Mei Zhang or Zhiguo Wang, Department of Hematology, the 1st Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta West Road, Xi’an, 710061, Shanxi Province, People’s Republic of China. Tel: +86 029 85323112; Fax: ++86 029 85323112. E-mail: zhangmeimed@yeah.net or wangzhiguo91006@163.com

aWang ZG and Luo H contributed equally to this work
Disclosure of conflict of interest

None.

Figure S1

Figure S1. Enforcing miR-204 expression inhibited human AML cell viability. (A and B) CCK-8 assay of cell viability in AML5, HL-60, Kasumi-1 or U937 cells transfected with miR-204 mimics (miR-204-m) (20 nM) (A) or miR-204 inhibitor (miR-204-i) (20 nM) (B) for 48 h. **P<0.01 vs. control, n=6. (C) The protein expression of cleaved Caspase-3 was examined by western blotting.