Supplementary Materials

Suppression of Akt-HIF-1α signaling axis by diacetyl atractylodiol inhibits hypoxia-induced angiogenesis

Sik-Won Choi¹,†, Kwang-Sik Lee¹,2,†, Jin Hwan Lee³, Hyeon Jung Kang¹, Mi Ja Lee¹, Hyun Young Kim¹, Kie-In Park⁴, Sun-Lim Kim¹, HyeKyoung Shin⁵,*, Woo Duck Seo¹,*

¹Division of Crop Foundation, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Jeonbuk 565-851, Korea; ²College of Crop Science and Biotechnology, Dankook University, Cheonan 330-714, Korea; ³Division of Research Development and Education, National Institute of Chemical Safety, Ministry of Environment, Daejeon, 305-343, Korea; ⁴Division of Biological Sciences, College of Natural Science, Chonbuk National University, Jeonbuk 561-756, Korea; ⁵Department of surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 135-515, Korea

†SWC and KSL contributed equally to this study.
Supplementary Figure 1. DAA inhibited HIF-1α translocation into the nucleus by CoCl₂ stimulation. HeLa cells were cultured with CoCl₂ (200 μM) in the indicated concentration of DAA for 16 h. Cells were subsequently fixed, permeabilized, and performed immunofluorescence analysis. The stained cells were visualized using confocal laser microscope (LSM-780, Zeiss). The merge images show nuclei (blue; DAPI), HIF-1α (green; FITC).

Supplementary Figure 2. DAA attenuated hypoxia-mediated HIF-1α mRNA expression. HIF-1α protein levels in HeLa cells exposed to 8 h CoCl₂ then treated with DMSO or DAA (16 μM) and actinomycin D (2 μg/ml; Sigma aldrich) were evaluated by western blot analysis. Actin was used as a loading control.