Inhibitory effects of lysozyme on endothelial protein C receptor shedding in vitro and in vivo

Sae-Kwang Ku1+, Eun Kyung Yoon2+, Hyun Gyu Lee3+, Min-Su Han4, Taeho Lee1*, and Jong-Sup Bae1*

From 1Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715 Republic of Korea; 2College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea; 3Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; 4Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Daegu 701-724, Republic of Korea;

+These authors contributed equally to this work.

Running title; Inhibitory effects of lysozyme on sEPCR

* Corresponding Author:

Taeho Lee

College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University

80 Dachak-ro, Buk-gu, Daegu, 702-701, Republic of Korea

Phone: 82-53-950-8573

Fax: 82-53-950-8557

E-mail: tlee@knu.ac.kr
and

Jong-Sup Bae

College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University

80 Dachak-ro, Buk-gu, Daegu, 702-701, Republic of Korea

Phone: 82-53-950-8570

Fax: 82-53-950-8557

E-mail: baejs@knu.ac.kr
Supplementary Materials and Methods

Enzyme-linked immunosorbent assay (ELISA) for membrane EPCR expression

Modified whole-cell ELISA was performed as previously described to determine the expression levels of EPCR on HUVECs (1). Briefly, confluent monolayers of HUVECs were treated with or without lysozyme for 6 h, followed by treatment with PMA, TNF-α, or IL-1β for 1 h.

Immunohistochemistry

To analyze the expression pattern of EPCR, the descending thoracic aortic vessels from CLP-induced septic (Day 4) and sham-operated mice were removed and the EPCR was stained as described previously (10).

ELISA for lysozyme, total and phospho p-38MAPK, ERK1/2, and JNK

The plasma concentrations of lysozyme in mouse plasma were quantified using ELISA kits (LSBio, Seattle, WA). HUVECs were cultured in 96-well microplates for the quantitative determination of p38 MAPK, ERK1/2, and JNK phosphorylation. On the day of the experiments, culture medium was replaced with serum-free growth medium. Cells were then treated with or without lysozyme for 6 h, followed by treatment with PMA (1 μM) for 1 h. Activation of p38 MAPK, ERK 1/2, and JNK was quantified in nuclear lysates using ELISA kits for total/phosphorylated p38 MAPK (Invitrogen, Carlsbad, CA, for total p38 MAPK or Cell Signaling Technology, Danvers, MA, for phosphorylated-p38 MAPK), total/phospho ERK1/2 and JNK (R&D Systems, Minneapolis, MN) according to the manufacturer's instructions.
References

Supplementary Fig 1

EPCR → sEPCR

TACE

Lysozyme